Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
\frac{13}{8}x-\frac{1}{16}=\frac{1}{4}+x
Combine \frac{7}{8}x and \frac{3}{4}x to get \frac{13}{8}x.
\frac{13}{8}x-\frac{1}{16}-x=\frac{1}{4}
Subtract x from both sides.
\frac{5}{8}x-\frac{1}{16}=\frac{1}{4}
Combine \frac{13}{8}x and -x to get \frac{5}{8}x.
\frac{5}{8}x=\frac{1}{4}+\frac{1}{16}
Add \frac{1}{16} to both sides.
\frac{5}{8}x=\frac{4}{16}+\frac{1}{16}
Least common multiple of 4 and 16 is 16. Convert \frac{1}{4} and \frac{1}{16} to fractions with denominator 16.
\frac{5}{8}x=\frac{4+1}{16}
Since \frac{4}{16} and \frac{1}{16} have the same denominator, add them by adding their numerators.
\frac{5}{8}x=\frac{5}{16}
Add 4 and 1 to get 5.
x=\frac{5}{16}\times \frac{8}{5}
Multiply both sides by \frac{8}{5}, the reciprocal of \frac{5}{8}.
x=\frac{5\times 8}{16\times 5}
Multiply \frac{5}{16} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{8}{16}
Cancel out 5 in both numerator and denominator.
x=\frac{1}{2}
Reduce the fraction \frac{8}{16} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}