Evaluate
\frac{17}{120}\approx 0.141666667
Factor
\frac{17}{2 ^ {3} \cdot 3 \cdot 5} = 0.14166666666666666
Share
Copied to clipboard
\frac{21}{24}-\frac{8}{24}-\frac{2}{5}
Least common multiple of 8 and 3 is 24. Convert \frac{7}{8} and \frac{1}{3} to fractions with denominator 24.
\frac{21-8}{24}-\frac{2}{5}
Since \frac{21}{24} and \frac{8}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{24}-\frac{2}{5}
Subtract 8 from 21 to get 13.
\frac{65}{120}-\frac{48}{120}
Least common multiple of 24 and 5 is 120. Convert \frac{13}{24} and \frac{2}{5} to fractions with denominator 120.
\frac{65-48}{120}
Since \frac{65}{120} and \frac{48}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{120}
Subtract 48 from 65 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}