Evaluate
\frac{63}{43}\approx 1.465116279
Factor
\frac{3 ^ {2} \cdot 7}{43} = 1\frac{20}{43} = 1.4651162790697674
Share
Copied to clipboard
\frac{\frac{7}{8}}{-\frac{7}{9}-\frac{-11}{8}}
Fraction \frac{-7}{9} can be rewritten as -\frac{7}{9} by extracting the negative sign.
\frac{\frac{7}{8}}{-\frac{7}{9}-\left(-\frac{11}{8}\right)}
Fraction \frac{-11}{8} can be rewritten as -\frac{11}{8} by extracting the negative sign.
\frac{\frac{7}{8}}{-\frac{7}{9}+\frac{11}{8}}
The opposite of -\frac{11}{8} is \frac{11}{8}.
\frac{\frac{7}{8}}{-\frac{56}{72}+\frac{99}{72}}
Least common multiple of 9 and 8 is 72. Convert -\frac{7}{9} and \frac{11}{8} to fractions with denominator 72.
\frac{\frac{7}{8}}{\frac{-56+99}{72}}
Since -\frac{56}{72} and \frac{99}{72} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{8}}{\frac{43}{72}}
Add -56 and 99 to get 43.
\frac{7}{8}\times \frac{72}{43}
Divide \frac{7}{8} by \frac{43}{72} by multiplying \frac{7}{8} by the reciprocal of \frac{43}{72}.
\frac{7\times 72}{8\times 43}
Multiply \frac{7}{8} times \frac{72}{43} by multiplying numerator times numerator and denominator times denominator.
\frac{504}{344}
Do the multiplications in the fraction \frac{7\times 72}{8\times 43}.
\frac{63}{43}
Reduce the fraction \frac{504}{344} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}