Evaluate
\frac{16}{15}\approx 1.066666667
Factor
\frac{2 ^ {4}}{3 \cdot 5} = 1\frac{1}{15} = 1.0666666666666667
Share
Copied to clipboard
\frac{7}{8}+\frac{2\times 1}{3\times 10}+\frac{1}{8}
Multiply \frac{2}{3} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{8}+\frac{2}{30}+\frac{1}{8}
Do the multiplications in the fraction \frac{2\times 1}{3\times 10}.
\frac{7}{8}+\frac{1}{15}+\frac{1}{8}
Reduce the fraction \frac{2}{30} to lowest terms by extracting and canceling out 2.
\frac{105}{120}+\frac{8}{120}+\frac{1}{8}
Least common multiple of 8 and 15 is 120. Convert \frac{7}{8} and \frac{1}{15} to fractions with denominator 120.
\frac{105+8}{120}+\frac{1}{8}
Since \frac{105}{120} and \frac{8}{120} have the same denominator, add them by adding their numerators.
\frac{113}{120}+\frac{1}{8}
Add 105 and 8 to get 113.
\frac{113}{120}+\frac{15}{120}
Least common multiple of 120 and 8 is 120. Convert \frac{113}{120} and \frac{1}{8} to fractions with denominator 120.
\frac{113+15}{120}
Since \frac{113}{120} and \frac{15}{120} have the same denominator, add them by adding their numerators.
\frac{128}{120}
Add 113 and 15 to get 128.
\frac{16}{15}
Reduce the fraction \frac{128}{120} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}