Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\left(7+\sqrt{5}\right)}{\left(7-\sqrt{5}\right)\left(7+\sqrt{5}\right)}
Rationalize the denominator of \frac{7}{7-\sqrt{5}} by multiplying numerator and denominator by 7+\sqrt{5}.
\frac{7\left(7+\sqrt{5}\right)}{7^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(7-\sqrt{5}\right)\left(7+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(7+\sqrt{5}\right)}{49-5}
Square 7. Square \sqrt{5}.
\frac{7\left(7+\sqrt{5}\right)}{44}
Subtract 5 from 49 to get 44.
\frac{49+7\sqrt{5}}{44}
Use the distributive property to multiply 7 by 7+\sqrt{5}.