Evaluate
\frac{145\left(by\right)^{3}}{48}
Expand
\frac{145\left(by\right)^{3}}{48}
Graph
Share
Copied to clipboard
\frac{7}{6}b^{3}y^{3}-\frac{12}{7}b^{3}y\left(-\frac{35}{36}\right)y^{2}+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{7}{6}b^{3}y^{3}-\frac{12}{7}b^{3}y^{3}\left(-\frac{35}{36}\right)+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{7}{6}b^{3}y^{3}-\left(-\frac{5}{3}b^{3}y^{3}\right)+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
Multiply \frac{12}{7} and -\frac{35}{36} to get -\frac{5}{3}.
\frac{7}{6}b^{3}y^{3}+\frac{5}{3}b^{3}y^{3}+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
The opposite of -\frac{5}{3}b^{3}y^{3} is \frac{5}{3}b^{3}y^{3}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
Combine \frac{7}{6}b^{3}y^{3} and \frac{5}{3}b^{3}y^{3} to get \frac{17}{6}b^{3}y^{3}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(-\frac{3}{4}by\left(-\frac{5}{12}\right)by-\frac{1}{16}b^{2}y^{2}\right)
Combine \frac{3}{4}by and -\frac{7}{6}by to get -\frac{5}{12}by.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(\frac{5}{16}byby-\frac{1}{16}b^{2}y^{2}\right)
Multiply -\frac{3}{4} and -\frac{5}{12} to get \frac{5}{16}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(\frac{5}{16}b^{2}yy-\frac{1}{16}b^{2}y^{2}\right)
Multiply b and b to get b^{2}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(\frac{5}{16}b^{2}y^{2}-\frac{1}{16}b^{2}y^{2}\right)
Multiply y and y to get y^{2}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\times \frac{1}{4}b^{2}y^{2}
Combine \frac{5}{16}b^{2}y^{2} and -\frac{1}{16}b^{2}y^{2} to get \frac{1}{4}b^{2}y^{2}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{16}byb^{2}y^{2}
Multiply \frac{3}{4} and \frac{1}{4} to get \frac{3}{16}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{16}b^{3}yy^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{17}{6}b^{3}y^{3}+\frac{3}{16}b^{3}y^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{145}{48}b^{3}y^{3}
Combine \frac{17}{6}b^{3}y^{3} and \frac{3}{16}b^{3}y^{3} to get \frac{145}{48}b^{3}y^{3}.
\frac{7}{6}b^{3}y^{3}-\frac{12}{7}b^{3}y\left(-\frac{35}{36}\right)y^{2}+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{7}{6}b^{3}y^{3}-\frac{12}{7}b^{3}y^{3}\left(-\frac{35}{36}\right)+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{7}{6}b^{3}y^{3}-\left(-\frac{5}{3}b^{3}y^{3}\right)+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
Multiply \frac{12}{7} and -\frac{35}{36} to get -\frac{5}{3}.
\frac{7}{6}b^{3}y^{3}+\frac{5}{3}b^{3}y^{3}+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
The opposite of -\frac{5}{3}b^{3}y^{3} is \frac{5}{3}b^{3}y^{3}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(-\frac{3}{4}by\left(\frac{3}{4}by-\frac{7}{6}by\right)-\frac{1}{16}b^{2}y^{2}\right)
Combine \frac{7}{6}b^{3}y^{3} and \frac{5}{3}b^{3}y^{3} to get \frac{17}{6}b^{3}y^{3}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(-\frac{3}{4}by\left(-\frac{5}{12}\right)by-\frac{1}{16}b^{2}y^{2}\right)
Combine \frac{3}{4}by and -\frac{7}{6}by to get -\frac{5}{12}by.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(\frac{5}{16}byby-\frac{1}{16}b^{2}y^{2}\right)
Multiply -\frac{3}{4} and -\frac{5}{12} to get \frac{5}{16}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(\frac{5}{16}b^{2}yy-\frac{1}{16}b^{2}y^{2}\right)
Multiply b and b to get b^{2}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\left(\frac{5}{16}b^{2}y^{2}-\frac{1}{16}b^{2}y^{2}\right)
Multiply y and y to get y^{2}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{4}by\times \frac{1}{4}b^{2}y^{2}
Combine \frac{5}{16}b^{2}y^{2} and -\frac{1}{16}b^{2}y^{2} to get \frac{1}{4}b^{2}y^{2}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{16}byb^{2}y^{2}
Multiply \frac{3}{4} and \frac{1}{4} to get \frac{3}{16}.
\frac{17}{6}b^{3}y^{3}+\frac{3}{16}b^{3}yy^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{17}{6}b^{3}y^{3}+\frac{3}{16}b^{3}y^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{145}{48}b^{3}y^{3}
Combine \frac{17}{6}b^{3}y^{3} and \frac{3}{16}b^{3}y^{3} to get \frac{145}{48}b^{3}y^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}