Solve for x
x=\frac{1}{15}\approx 0.066666667
Graph
Share
Copied to clipboard
8\times \frac{7}{40}=x\left(2\times 8+5\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x, the least common multiple of x,8.
\frac{8\times 7}{40}=x\left(2\times 8+5\right)
Express 8\times \frac{7}{40} as a single fraction.
\frac{56}{40}=x\left(2\times 8+5\right)
Multiply 8 and 7 to get 56.
\frac{7}{5}=x\left(2\times 8+5\right)
Reduce the fraction \frac{56}{40} to lowest terms by extracting and canceling out 8.
\frac{7}{5}=x\left(16+5\right)
Multiply 2 and 8 to get 16.
\frac{7}{5}=x\times 21
Add 16 and 5 to get 21.
x\times 21=\frac{7}{5}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\frac{7}{5}}{21}
Divide both sides by 21.
x=\frac{7}{5\times 21}
Express \frac{\frac{7}{5}}{21} as a single fraction.
x=\frac{7}{105}
Multiply 5 and 21 to get 105.
x=\frac{1}{15}
Reduce the fraction \frac{7}{105} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}