Solve for x
x=-1
Graph
Quiz
Linear Equation
\frac { 7 } { 4 } ( x - 1 ) - \frac { 8 } { 9 } ( 2 x - 1 ) = - \frac { 5 } { 6 }
Share
Copied to clipboard
\frac{7}{4}x+\frac{7}{4}\left(-1\right)-\frac{8}{9}\left(2x-1\right)=-\frac{5}{6}
Use the distributive property to multiply \frac{7}{4} by x-1.
\frac{7}{4}x-\frac{7}{4}-\frac{8}{9}\left(2x-1\right)=-\frac{5}{6}
Multiply \frac{7}{4} and -1 to get -\frac{7}{4}.
\frac{7}{4}x-\frac{7}{4}-\frac{8}{9}\times 2x-\frac{8}{9}\left(-1\right)=-\frac{5}{6}
Use the distributive property to multiply -\frac{8}{9} by 2x-1.
\frac{7}{4}x-\frac{7}{4}+\frac{-8\times 2}{9}x-\frac{8}{9}\left(-1\right)=-\frac{5}{6}
Express -\frac{8}{9}\times 2 as a single fraction.
\frac{7}{4}x-\frac{7}{4}+\frac{-16}{9}x-\frac{8}{9}\left(-1\right)=-\frac{5}{6}
Multiply -8 and 2 to get -16.
\frac{7}{4}x-\frac{7}{4}-\frac{16}{9}x-\frac{8}{9}\left(-1\right)=-\frac{5}{6}
Fraction \frac{-16}{9} can be rewritten as -\frac{16}{9} by extracting the negative sign.
\frac{7}{4}x-\frac{7}{4}-\frac{16}{9}x+\frac{8}{9}=-\frac{5}{6}
Multiply -\frac{8}{9} and -1 to get \frac{8}{9}.
-\frac{1}{36}x-\frac{7}{4}+\frac{8}{9}=-\frac{5}{6}
Combine \frac{7}{4}x and -\frac{16}{9}x to get -\frac{1}{36}x.
-\frac{1}{36}x-\frac{63}{36}+\frac{32}{36}=-\frac{5}{6}
Least common multiple of 4 and 9 is 36. Convert -\frac{7}{4} and \frac{8}{9} to fractions with denominator 36.
-\frac{1}{36}x+\frac{-63+32}{36}=-\frac{5}{6}
Since -\frac{63}{36} and \frac{32}{36} have the same denominator, add them by adding their numerators.
-\frac{1}{36}x-\frac{31}{36}=-\frac{5}{6}
Add -63 and 32 to get -31.
-\frac{1}{36}x=-\frac{5}{6}+\frac{31}{36}
Add \frac{31}{36} to both sides.
-\frac{1}{36}x=-\frac{30}{36}+\frac{31}{36}
Least common multiple of 6 and 36 is 36. Convert -\frac{5}{6} and \frac{31}{36} to fractions with denominator 36.
-\frac{1}{36}x=\frac{-30+31}{36}
Since -\frac{30}{36} and \frac{31}{36} have the same denominator, add them by adding their numerators.
-\frac{1}{36}x=\frac{1}{36}
Add -30 and 31 to get 1.
x=\frac{1}{36}\left(-36\right)
Multiply both sides by -36, the reciprocal of -\frac{1}{36}.
x=\frac{-36}{36}
Multiply \frac{1}{36} and -36 to get \frac{-36}{36}.
x=-1
Divide -36 by 36 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}