Evaluate
\frac{3}{10}=0.3
Factor
\frac{3}{2 \cdot 5} = 0.3
Share
Copied to clipboard
\frac{1}{5}\times \frac{1}{3}+\frac{8}{35}\times \frac{1}{2}+\frac{20}{35}\times \frac{5}{24}
Reduce the fraction \frac{7}{35} to lowest terms by extracting and canceling out 7.
\frac{1\times 1}{5\times 3}+\frac{8}{35}\times \frac{1}{2}+\frac{20}{35}\times \frac{5}{24}
Multiply \frac{1}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}+\frac{8}{35}\times \frac{1}{2}+\frac{20}{35}\times \frac{5}{24}
Do the multiplications in the fraction \frac{1\times 1}{5\times 3}.
\frac{1}{15}+\frac{8\times 1}{35\times 2}+\frac{20}{35}\times \frac{5}{24}
Multiply \frac{8}{35} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}+\frac{8}{70}+\frac{20}{35}\times \frac{5}{24}
Do the multiplications in the fraction \frac{8\times 1}{35\times 2}.
\frac{1}{15}+\frac{4}{35}+\frac{20}{35}\times \frac{5}{24}
Reduce the fraction \frac{8}{70} to lowest terms by extracting and canceling out 2.
\frac{7}{105}+\frac{12}{105}+\frac{20}{35}\times \frac{5}{24}
Least common multiple of 15 and 35 is 105. Convert \frac{1}{15} and \frac{4}{35} to fractions with denominator 105.
\frac{7+12}{105}+\frac{20}{35}\times \frac{5}{24}
Since \frac{7}{105} and \frac{12}{105} have the same denominator, add them by adding their numerators.
\frac{19}{105}+\frac{20}{35}\times \frac{5}{24}
Add 7 and 12 to get 19.
\frac{19}{105}+\frac{4}{7}\times \frac{5}{24}
Reduce the fraction \frac{20}{35} to lowest terms by extracting and canceling out 5.
\frac{19}{105}+\frac{4\times 5}{7\times 24}
Multiply \frac{4}{7} times \frac{5}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{19}{105}+\frac{20}{168}
Do the multiplications in the fraction \frac{4\times 5}{7\times 24}.
\frac{19}{105}+\frac{5}{42}
Reduce the fraction \frac{20}{168} to lowest terms by extracting and canceling out 4.
\frac{38}{210}+\frac{25}{210}
Least common multiple of 105 and 42 is 210. Convert \frac{19}{105} and \frac{5}{42} to fractions with denominator 210.
\frac{38+25}{210}
Since \frac{38}{210} and \frac{25}{210} have the same denominator, add them by adding their numerators.
\frac{63}{210}
Add 38 and 25 to get 63.
\frac{3}{10}
Reduce the fraction \frac{63}{210} to lowest terms by extracting and canceling out 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}