Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{7\times 4}{3x+2}x-1
Express \frac{7}{3x+2}\times 4 as a single fraction.
\frac{7\times 4x}{3x+2}-1
Express \frac{7\times 4}{3x+2}x as a single fraction.
\frac{7\times 4x}{3x+2}-\frac{3x+2}{3x+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3x+2}{3x+2}.
\frac{7\times 4x-\left(3x+2\right)}{3x+2}
Since \frac{7\times 4x}{3x+2} and \frac{3x+2}{3x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{28x-3x-2}{3x+2}
Do the multiplications in 7\times 4x-\left(3x+2\right).
\frac{25x-2}{3x+2}
Combine like terms in 28x-3x-2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\times 4}{3x+2}x-1)
Express \frac{7}{3x+2}\times 4 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\times 4x}{3x+2}-1)
Express \frac{7\times 4}{3x+2}x as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\times 4x}{3x+2}-\frac{3x+2}{3x+2})
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3x+2}{3x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7\times 4x-\left(3x+2\right)}{3x+2})
Since \frac{7\times 4x}{3x+2} and \frac{3x+2}{3x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{28x-3x-2}{3x+2})
Do the multiplications in 7\times 4x-\left(3x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25x-2}{3x+2})
Combine like terms in 28x-3x-2.
\frac{\left(3x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(25x^{1}-2)-\left(25x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+2)}{\left(3x^{1}+2\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(3x^{1}+2\right)\times 25x^{1-1}-\left(25x^{1}-2\right)\times 3x^{1-1}}{\left(3x^{1}+2\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(3x^{1}+2\right)\times 25x^{0}-\left(25x^{1}-2\right)\times 3x^{0}}{\left(3x^{1}+2\right)^{2}}
Do the arithmetic.
\frac{3x^{1}\times 25x^{0}+2\times 25x^{0}-\left(25x^{1}\times 3x^{0}-2\times 3x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Expand using distributive property.
\frac{3\times 25x^{1}+2\times 25x^{0}-\left(25\times 3x^{1}-2\times 3x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{75x^{1}+50x^{0}-\left(75x^{1}-6x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Do the arithmetic.
\frac{75x^{1}+50x^{0}-75x^{1}-\left(-6x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(75-75\right)x^{1}+\left(50-\left(-6\right)\right)x^{0}}{\left(3x^{1}+2\right)^{2}}
Combine like terms.
\frac{56x^{0}}{\left(3x^{1}+2\right)^{2}}
Subtract 75 from 75 and -6 from 50.
\frac{56x^{0}}{\left(3x+2\right)^{2}}
For any term t, t^{1}=t.
\frac{56\times 1}{\left(3x+2\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{56}{\left(3x+2\right)^{2}}
For any term t, t\times 1=t and 1t=t.