Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{7\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\times 3+7i}{10}
Multiply 7 times 3+i.
\frac{21+7i}{10}
Do the multiplications in 7\times 3+7i.
\frac{21}{10}+\frac{7}{10}i
Divide 21+7i by 10 to get \frac{21}{10}+\frac{7}{10}i.
Re(\frac{7\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{7}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{7\left(3+i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{7\left(3+i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\times 3+7i}{10})
Multiply 7 times 3+i.
Re(\frac{21+7i}{10})
Do the multiplications in 7\times 3+7i.
Re(\frac{21}{10}+\frac{7}{10}i)
Divide 21+7i by 10 to get \frac{21}{10}+\frac{7}{10}i.
\frac{21}{10}
The real part of \frac{21}{10}+\frac{7}{10}i is \frac{21}{10}.