Solve for m
m=\frac{5\sqrt{3}i}{6}+\frac{1}{2}\approx 0.5+1.443375673i
m=-\frac{5\sqrt{3}i}{6}+\frac{1}{2}\approx 0.5-1.443375673i
Share
Copied to clipboard
m^{2}-m+\frac{7}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{7}{3}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and \frac{7}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-1\right)±\sqrt{1-\frac{28}{3}}}{2}
Multiply -4 times \frac{7}{3}.
m=\frac{-\left(-1\right)±\sqrt{-\frac{25}{3}}}{2}
Add 1 to -\frac{28}{3}.
m=\frac{-\left(-1\right)±\frac{5\sqrt{3}i}{3}}{2}
Take the square root of -\frac{25}{3}.
m=\frac{1±\frac{5\sqrt{3}i}{3}}{2}
The opposite of -1 is 1.
m=\frac{\frac{5\sqrt{3}i}{3}+1}{2}
Now solve the equation m=\frac{1±\frac{5\sqrt{3}i}{3}}{2} when ± is plus. Add 1 to \frac{5i\sqrt{3}}{3}.
m=\frac{5\sqrt{3}i}{6}+\frac{1}{2}
Divide 1+\frac{5i\sqrt{3}}{3} by 2.
m=\frac{-\frac{5\sqrt{3}i}{3}+1}{2}
Now solve the equation m=\frac{1±\frac{5\sqrt{3}i}{3}}{2} when ± is minus. Subtract \frac{5i\sqrt{3}}{3} from 1.
m=-\frac{5\sqrt{3}i}{6}+\frac{1}{2}
Divide 1-\frac{5i\sqrt{3}}{3} by 2.
m=\frac{5\sqrt{3}i}{6}+\frac{1}{2} m=-\frac{5\sqrt{3}i}{6}+\frac{1}{2}
The equation is now solved.
m^{2}-m+\frac{7}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-m+\frac{7}{3}-\frac{7}{3}=-\frac{7}{3}
Subtract \frac{7}{3} from both sides of the equation.
m^{2}-m=-\frac{7}{3}
Subtracting \frac{7}{3} from itself leaves 0.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=-\frac{7}{3}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-m+\frac{1}{4}=-\frac{7}{3}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-m+\frac{1}{4}=-\frac{25}{12}
Add -\frac{7}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{1}{2}\right)^{2}=-\frac{25}{12}
Factor m^{2}-m+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{25}{12}}
Take the square root of both sides of the equation.
m-\frac{1}{2}=\frac{5\sqrt{3}i}{6} m-\frac{1}{2}=-\frac{5\sqrt{3}i}{6}
Simplify.
m=\frac{5\sqrt{3}i}{6}+\frac{1}{2} m=-\frac{5\sqrt{3}i}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}