Solve for c
c=-2
Share
Copied to clipboard
\frac{7}{3}c+\frac{7}{3}\times 3=\frac{1}{3}-c
Use the distributive property to multiply \frac{7}{3} by c+3.
\frac{7}{3}c+7=\frac{1}{3}-c
Cancel out 3 and 3.
\frac{7}{3}c+7+c=\frac{1}{3}
Add c to both sides.
\frac{10}{3}c+7=\frac{1}{3}
Combine \frac{7}{3}c and c to get \frac{10}{3}c.
\frac{10}{3}c=\frac{1}{3}-7
Subtract 7 from both sides.
\frac{10}{3}c=\frac{1}{3}-\frac{21}{3}
Convert 7 to fraction \frac{21}{3}.
\frac{10}{3}c=\frac{1-21}{3}
Since \frac{1}{3} and \frac{21}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}c=-\frac{20}{3}
Subtract 21 from 1 to get -20.
c=-\frac{20}{3}\times \frac{3}{10}
Multiply both sides by \frac{3}{10}, the reciprocal of \frac{10}{3}.
c=\frac{-20\times 3}{3\times 10}
Multiply -\frac{20}{3} times \frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
c=\frac{-20}{10}
Cancel out 3 in both numerator and denominator.
c=-2
Divide -20 by 10 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}