Evaluate
\frac{-a^{2}+32a-28}{2\left(5a-4\right)\left(a+3\right)}
Factor
-\frac{\frac{1}{2}\left(a-\left(16-2\sqrt{57}\right)\right)\left(a-\left(2\sqrt{57}+16\right)\right)}{\left(5a-4\right)\left(a+3\right)}
Share
Copied to clipboard
\frac{7}{2\left(a+3\right)}-\frac{a}{2\left(5a-4\right)}
Factor 2a+6. Factor 10a-8.
\frac{7\left(5a-4\right)}{2\left(5a-4\right)\left(a+3\right)}-\frac{a\left(a+3\right)}{2\left(5a-4\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a+3\right) and 2\left(5a-4\right) is 2\left(5a-4\right)\left(a+3\right). Multiply \frac{7}{2\left(a+3\right)} times \frac{5a-4}{5a-4}. Multiply \frac{a}{2\left(5a-4\right)} times \frac{a+3}{a+3}.
\frac{7\left(5a-4\right)-a\left(a+3\right)}{2\left(5a-4\right)\left(a+3\right)}
Since \frac{7\left(5a-4\right)}{2\left(5a-4\right)\left(a+3\right)} and \frac{a\left(a+3\right)}{2\left(5a-4\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{35a-28-a^{2}-3a}{2\left(5a-4\right)\left(a+3\right)}
Do the multiplications in 7\left(5a-4\right)-a\left(a+3\right).
\frac{32a-28-a^{2}}{2\left(5a-4\right)\left(a+3\right)}
Combine like terms in 35a-28-a^{2}-3a.
\frac{32a-28-a^{2}}{10a^{2}+22a-24}
Expand 2\left(5a-4\right)\left(a+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}