Solve for x
x = \frac{14}{5} = 2\frac{4}{5} = 2.8
Graph
Share
Copied to clipboard
\frac{7}{2}-\frac{3}{10}-\left(-x\right)=\sqrt{\frac{9}{25}}+\frac{3}{4}\left(2x+\frac{8}{5}\right)
To find the opposite of \frac{3}{10}-x, find the opposite of each term.
\frac{7}{2}-\frac{3}{10}+x=\sqrt{\frac{9}{25}}+\frac{3}{4}\left(2x+\frac{8}{5}\right)
The opposite of -x is x.
\frac{35}{10}-\frac{3}{10}+x=\sqrt{\frac{9}{25}}+\frac{3}{4}\left(2x+\frac{8}{5}\right)
Least common multiple of 2 and 10 is 10. Convert \frac{7}{2} and \frac{3}{10} to fractions with denominator 10.
\frac{35-3}{10}+x=\sqrt{\frac{9}{25}}+\frac{3}{4}\left(2x+\frac{8}{5}\right)
Since \frac{35}{10} and \frac{3}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{10}+x=\sqrt{\frac{9}{25}}+\frac{3}{4}\left(2x+\frac{8}{5}\right)
Subtract 3 from 35 to get 32.
\frac{16}{5}+x=\sqrt{\frac{9}{25}}+\frac{3}{4}\left(2x+\frac{8}{5}\right)
Reduce the fraction \frac{32}{10} to lowest terms by extracting and canceling out 2.
\frac{16}{5}+x=\frac{3}{5}+\frac{3}{4}\left(2x+\frac{8}{5}\right)
Rewrite the square root of the division \frac{9}{25} as the division of square roots \frac{\sqrt{9}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{16}{5}+x=\frac{3}{5}+\frac{3}{4}\times 2x+\frac{3}{4}\times \frac{8}{5}
Use the distributive property to multiply \frac{3}{4} by 2x+\frac{8}{5}.
\frac{16}{5}+x=\frac{3}{5}+\frac{3\times 2}{4}x+\frac{3}{4}\times \frac{8}{5}
Express \frac{3}{4}\times 2 as a single fraction.
\frac{16}{5}+x=\frac{3}{5}+\frac{6}{4}x+\frac{3}{4}\times \frac{8}{5}
Multiply 3 and 2 to get 6.
\frac{16}{5}+x=\frac{3}{5}+\frac{3}{2}x+\frac{3}{4}\times \frac{8}{5}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{16}{5}+x=\frac{3}{5}+\frac{3}{2}x+\frac{3\times 8}{4\times 5}
Multiply \frac{3}{4} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{5}+x=\frac{3}{5}+\frac{3}{2}x+\frac{24}{20}
Do the multiplications in the fraction \frac{3\times 8}{4\times 5}.
\frac{16}{5}+x=\frac{3}{5}+\frac{3}{2}x+\frac{6}{5}
Reduce the fraction \frac{24}{20} to lowest terms by extracting and canceling out 4.
\frac{16}{5}+x=\frac{3+6}{5}+\frac{3}{2}x
Since \frac{3}{5} and \frac{6}{5} have the same denominator, add them by adding their numerators.
\frac{16}{5}+x=\frac{9}{5}+\frac{3}{2}x
Add 3 and 6 to get 9.
\frac{16}{5}+x-\frac{3}{2}x=\frac{9}{5}
Subtract \frac{3}{2}x from both sides.
\frac{16}{5}-\frac{1}{2}x=\frac{9}{5}
Combine x and -\frac{3}{2}x to get -\frac{1}{2}x.
-\frac{1}{2}x=\frac{9}{5}-\frac{16}{5}
Subtract \frac{16}{5} from both sides.
-\frac{1}{2}x=\frac{9-16}{5}
Since \frac{9}{5} and \frac{16}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}x=-\frac{7}{5}
Subtract 16 from 9 to get -7.
x=-\frac{7}{5}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
x=\frac{-7\left(-2\right)}{5}
Express -\frac{7}{5}\left(-2\right) as a single fraction.
x=\frac{14}{5}
Multiply -7 and -2 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}