Evaluate
-\frac{13}{2}=-6.5
Factor
-\frac{13}{2} = -6\frac{1}{2} = -6.5
Share
Copied to clipboard
\frac{7}{2}-\left(\left(\frac{15}{10}-\frac{2}{10}\right)\times 5+\frac{2}{\frac{\frac{1}{3}}{1}}-\frac{5}{2}\right)
Least common multiple of 2 and 5 is 10. Convert \frac{3}{2} and \frac{1}{5} to fractions with denominator 10.
\frac{7}{2}-\left(\frac{15-2}{10}\times 5+\frac{2}{\frac{\frac{1}{3}}{1}}-\frac{5}{2}\right)
Since \frac{15}{10} and \frac{2}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{2}-\left(\frac{13}{10}\times 5+\frac{2}{\frac{\frac{1}{3}}{1}}-\frac{5}{2}\right)
Subtract 2 from 15 to get 13.
\frac{7}{2}-\left(\frac{13\times 5}{10}+\frac{2}{\frac{\frac{1}{3}}{1}}-\frac{5}{2}\right)
Express \frac{13}{10}\times 5 as a single fraction.
\frac{7}{2}-\left(\frac{65}{10}+\frac{2}{\frac{\frac{1}{3}}{1}}-\frac{5}{2}\right)
Multiply 13 and 5 to get 65.
\frac{7}{2}-\left(\frac{13}{2}+\frac{2}{\frac{\frac{1}{3}}{1}}-\frac{5}{2}\right)
Reduce the fraction \frac{65}{10} to lowest terms by extracting and canceling out 5.
\frac{7}{2}-\left(\frac{13}{2}+\frac{2}{\frac{1}{3}}-\frac{5}{2}\right)
Divide 2 by \frac{\frac{1}{3}}{1} by multiplying 2 by the reciprocal of \frac{\frac{1}{3}}{1}.
\frac{7}{2}-\left(\frac{13}{2}+2\times 3-\frac{5}{2}\right)
Divide 2 by \frac{1}{3} by multiplying 2 by the reciprocal of \frac{1}{3}.
\frac{7}{2}-\left(\frac{13}{2}+6-\frac{5}{2}\right)
Multiply 2 and 3 to get 6.
\frac{7}{2}-\left(\frac{13}{2}+\frac{12}{2}-\frac{5}{2}\right)
Convert 6 to fraction \frac{12}{2}.
\frac{7}{2}-\left(\frac{13+12}{2}-\frac{5}{2}\right)
Since \frac{13}{2} and \frac{12}{2} have the same denominator, add them by adding their numerators.
\frac{7}{2}-\left(\frac{25}{2}-\frac{5}{2}\right)
Add 13 and 12 to get 25.
\frac{7}{2}-\frac{25-5}{2}
Since \frac{25}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{2}-\frac{20}{2}
Subtract 5 from 25 to get 20.
\frac{7-20}{2}
Since \frac{7}{2} and \frac{20}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{2}
Subtract 20 from 7 to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}