Evaluate
\frac{353}{30}\approx 11.766666667
Factor
\frac{353}{2 \cdot 3 \cdot 5} = 11\frac{23}{30} = 11.766666666666667
Share
Copied to clipboard
\frac{7\times 2}{12\times 7}+\frac{\frac{1}{3}}{\frac{5}{6}}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Multiply \frac{7}{12} times \frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{12}+\frac{\frac{1}{3}}{\frac{5}{6}}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Cancel out 7 in both numerator and denominator.
\frac{1}{6}+\frac{\frac{1}{3}}{\frac{5}{6}}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{1}{6}+\frac{1}{3}\times \frac{6}{5}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Divide \frac{1}{3} by \frac{5}{6} by multiplying \frac{1}{3} by the reciprocal of \frac{5}{6}.
\frac{1}{6}+\frac{1\times 6}{3\times 5}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Multiply \frac{1}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{6}+\frac{6}{15}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Do the multiplications in the fraction \frac{1\times 6}{3\times 5}.
\frac{1}{6}+\frac{2}{5}\left(\frac{2}{3}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
\frac{1}{6}+\frac{2}{5}\left(\frac{4}{6}+\frac{1}{6}+\frac{3}{8}\right)\times 24
Least common multiple of 3 and 6 is 6. Convert \frac{2}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{1}{6}+\frac{2}{5}\left(\frac{4+1}{6}+\frac{3}{8}\right)\times 24
Since \frac{4}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{1}{6}+\frac{2}{5}\left(\frac{5}{6}+\frac{3}{8}\right)\times 24
Add 4 and 1 to get 5.
\frac{1}{6}+\frac{2}{5}\left(\frac{20}{24}+\frac{9}{24}\right)\times 24
Least common multiple of 6 and 8 is 24. Convert \frac{5}{6} and \frac{3}{8} to fractions with denominator 24.
\frac{1}{6}+\frac{2}{5}\times \frac{20+9}{24}\times 24
Since \frac{20}{24} and \frac{9}{24} have the same denominator, add them by adding their numerators.
\frac{1}{6}+\frac{2}{5}\times \frac{29}{24}\times 24
Add 20 and 9 to get 29.
\frac{1}{6}+\frac{2\times 29}{5\times 24}\times 24
Multiply \frac{2}{5} times \frac{29}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{6}+\frac{58}{120}\times 24
Do the multiplications in the fraction \frac{2\times 29}{5\times 24}.
\frac{1}{6}+\frac{29}{60}\times 24
Reduce the fraction \frac{58}{120} to lowest terms by extracting and canceling out 2.
\frac{1}{6}+\frac{29\times 24}{60}
Express \frac{29}{60}\times 24 as a single fraction.
\frac{1}{6}+\frac{696}{60}
Multiply 29 and 24 to get 696.
\frac{1}{6}+\frac{58}{5}
Reduce the fraction \frac{696}{60} to lowest terms by extracting and canceling out 12.
\frac{5}{30}+\frac{348}{30}
Least common multiple of 6 and 5 is 30. Convert \frac{1}{6} and \frac{58}{5} to fractions with denominator 30.
\frac{5+348}{30}
Since \frac{5}{30} and \frac{348}{30} have the same denominator, add them by adding their numerators.
\frac{353}{30}
Add 5 and 348 to get 353.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}