\frac { 7 } { 12 } \div ( 75 \% - \frac { 5 } { 12 } ) - \frac { 17 } { 24 } \quad \frac { 5 } { 3 } \times ( 80 \% + \frac { 9 } { 14 } \div \frac { 36 } { 35 } )
Evaluate
\frac{13}{192}\approx 0.067708333
Factor
\frac{13}{2 ^ {6} \cdot 3} = 0.06770833333333333
Share
Copied to clipboard
\frac{\frac{7}{12}}{\frac{3}{4}-\frac{5}{12}}-\frac{17}{24}\times \frac{5}{3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
\frac{\frac{7}{12}}{\frac{9}{12}-\frac{5}{12}}-\frac{17}{24}\times \frac{5}{3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Least common multiple of 4 and 12 is 12. Convert \frac{3}{4} and \frac{5}{12} to fractions with denominator 12.
\frac{\frac{7}{12}}{\frac{9-5}{12}}-\frac{17}{24}\times \frac{5}{3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Since \frac{9}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{12}}{\frac{4}{12}}-\frac{17}{24}\times \frac{5}{3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Subtract 5 from 9 to get 4.
\frac{\frac{7}{12}}{\frac{1}{3}}-\frac{17}{24}\times \frac{5}{3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{7}{12}\times 3-\frac{17}{24}\times \frac{5}{3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Divide \frac{7}{12} by \frac{1}{3} by multiplying \frac{7}{12} by the reciprocal of \frac{1}{3}.
\frac{7\times 3}{12}-\frac{17}{24}\times \frac{5}{3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Express \frac{7}{12}\times 3 as a single fraction.
\frac{21}{12}-\frac{17}{24}\times \frac{5}{3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Multiply 7 and 3 to get 21.
\frac{7}{4}-\frac{17}{24}\times \frac{5}{3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Reduce the fraction \frac{21}{12} to lowest terms by extracting and canceling out 3.
\frac{7}{4}-\frac{17\times 5}{24\times 3}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Multiply \frac{17}{24} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{4}-\frac{85}{72}\left(\frac{80}{100}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Do the multiplications in the fraction \frac{17\times 5}{24\times 3}.
\frac{7}{4}-\frac{85}{72}\left(\frac{4}{5}+\frac{\frac{9}{14}}{\frac{36}{35}}\right)
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{7}{4}-\frac{85}{72}\left(\frac{4}{5}+\frac{9}{14}\times \frac{35}{36}\right)
Divide \frac{9}{14} by \frac{36}{35} by multiplying \frac{9}{14} by the reciprocal of \frac{36}{35}.
\frac{7}{4}-\frac{85}{72}\left(\frac{4}{5}+\frac{9\times 35}{14\times 36}\right)
Multiply \frac{9}{14} times \frac{35}{36} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{4}-\frac{85}{72}\left(\frac{4}{5}+\frac{315}{504}\right)
Do the multiplications in the fraction \frac{9\times 35}{14\times 36}.
\frac{7}{4}-\frac{85}{72}\left(\frac{4}{5}+\frac{5}{8}\right)
Reduce the fraction \frac{315}{504} to lowest terms by extracting and canceling out 63.
\frac{7}{4}-\frac{85}{72}\left(\frac{32}{40}+\frac{25}{40}\right)
Least common multiple of 5 and 8 is 40. Convert \frac{4}{5} and \frac{5}{8} to fractions with denominator 40.
\frac{7}{4}-\frac{85}{72}\times \frac{32+25}{40}
Since \frac{32}{40} and \frac{25}{40} have the same denominator, add them by adding their numerators.
\frac{7}{4}-\frac{85}{72}\times \frac{57}{40}
Add 32 and 25 to get 57.
\frac{7}{4}-\frac{85\times 57}{72\times 40}
Multiply \frac{85}{72} times \frac{57}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{4}-\frac{4845}{2880}
Do the multiplications in the fraction \frac{85\times 57}{72\times 40}.
\frac{7}{4}-\frac{323}{192}
Reduce the fraction \frac{4845}{2880} to lowest terms by extracting and canceling out 15.
\frac{336}{192}-\frac{323}{192}
Least common multiple of 4 and 192 is 192. Convert \frac{7}{4} and \frac{323}{192} to fractions with denominator 192.
\frac{336-323}{192}
Since \frac{336}{192} and \frac{323}{192} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{192}
Subtract 323 from 336 to get 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}