Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\frac{7}{11}}{\frac{44+7}{11}-\frac{13\times 13+4}{13}+\frac{9\times 13+4}{13}}
Multiply 4 and 11 to get 44.
\frac{\frac{7}{11}}{\frac{51}{11}-\frac{13\times 13+4}{13}+\frac{9\times 13+4}{13}}
Add 44 and 7 to get 51.
\frac{\frac{7}{11}}{\frac{51}{11}-\frac{169+4}{13}+\frac{9\times 13+4}{13}}
Multiply 13 and 13 to get 169.
\frac{\frac{7}{11}}{\frac{51}{11}-\frac{173}{13}+\frac{9\times 13+4}{13}}
Add 169 and 4 to get 173.
\frac{\frac{7}{11}}{\frac{663}{143}-\frac{1903}{143}+\frac{9\times 13+4}{13}}
Least common multiple of 11 and 13 is 143. Convert \frac{51}{11} and \frac{173}{13} to fractions with denominator 143.
\frac{\frac{7}{11}}{\frac{663-1903}{143}+\frac{9\times 13+4}{13}}
Since \frac{663}{143} and \frac{1903}{143} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{11}}{-\frac{1240}{143}+\frac{9\times 13+4}{13}}
Subtract 1903 from 663 to get -1240.
\frac{\frac{7}{11}}{-\frac{1240}{143}+\frac{117+4}{13}}
Multiply 9 and 13 to get 117.
\frac{\frac{7}{11}}{-\frac{1240}{143}+\frac{121}{13}}
Add 117 and 4 to get 121.
\frac{\frac{7}{11}}{-\frac{1240}{143}+\frac{1331}{143}}
Least common multiple of 143 and 13 is 143. Convert -\frac{1240}{143} and \frac{121}{13} to fractions with denominator 143.
\frac{\frac{7}{11}}{\frac{-1240+1331}{143}}
Since -\frac{1240}{143} and \frac{1331}{143} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{11}}{\frac{91}{143}}
Add -1240 and 1331 to get 91.
\frac{\frac{7}{11}}{\frac{7}{11}}
Reduce the fraction \frac{91}{143} to lowest terms by extracting and canceling out 13.
1
Divide \frac{7}{11} by \frac{7}{11} to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}