Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\left(-5-\sqrt{2}\right)}{\left(-5+\sqrt{2}\right)\left(-5-\sqrt{2}\right)}
Rationalize the denominator of \frac{7}{-5+\sqrt{2}} by multiplying numerator and denominator by -5-\sqrt{2}.
\frac{7\left(-5-\sqrt{2}\right)}{\left(-5\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(-5+\sqrt{2}\right)\left(-5-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-5-\sqrt{2}\right)}{25-2}
Square -5. Square \sqrt{2}.
\frac{7\left(-5-\sqrt{2}\right)}{23}
Subtract 2 from 25 to get 23.
\frac{-35-7\sqrt{2}}{23}
Use the distributive property to multiply 7 by -5-\sqrt{2}.