Evaluate
\frac{-7\sqrt{2}-35}{23}\approx -1.952151954
Share
Copied to clipboard
\frac{7\left(-5-\sqrt{2}\right)}{\left(-5+\sqrt{2}\right)\left(-5-\sqrt{2}\right)}
Rationalize the denominator of \frac{7}{-5+\sqrt{2}} by multiplying numerator and denominator by -5-\sqrt{2}.
\frac{7\left(-5-\sqrt{2}\right)}{\left(-5\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(-5+\sqrt{2}\right)\left(-5-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-5-\sqrt{2}\right)}{25-2}
Square -5. Square \sqrt{2}.
\frac{7\left(-5-\sqrt{2}\right)}{23}
Subtract 2 from 25 to get 23.
\frac{-35-7\sqrt{2}}{23}
Use the distributive property to multiply 7 by -5-\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}