Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\left(-10+\sqrt{2}\right)}{\left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right)}
Rationalize the denominator of \frac{7}{-10-\sqrt{2}} by multiplying numerator and denominator by -10+\sqrt{2}.
\frac{7\left(-10+\sqrt{2}\right)}{\left(-10\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-10+\sqrt{2}\right)}{100-2}
Square -10. Square \sqrt{2}.
\frac{7\left(-10+\sqrt{2}\right)}{98}
Subtract 2 from 100 to get 98.
\frac{1}{14}\left(-10+\sqrt{2}\right)
Divide 7\left(-10+\sqrt{2}\right) by 98 to get \frac{1}{14}\left(-10+\sqrt{2}\right).
\frac{1}{14}\left(-10\right)+\frac{1}{14}\sqrt{2}
Use the distributive property to multiply \frac{1}{14} by -10+\sqrt{2}.
\frac{-10}{14}+\frac{1}{14}\sqrt{2}
Multiply \frac{1}{14} and -10 to get \frac{-10}{14}.
-\frac{5}{7}+\frac{1}{14}\sqrt{2}
Reduce the fraction \frac{-10}{14} to lowest terms by extracting and canceling out 2.