Evaluate
\frac{\sqrt{2}-10}{14}\approx -0.61327046
Share
Copied to clipboard
\frac{7\left(-10+\sqrt{2}\right)}{\left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right)}
Rationalize the denominator of \frac{7}{-10-\sqrt{2}} by multiplying numerator and denominator by -10+\sqrt{2}.
\frac{7\left(-10+\sqrt{2}\right)}{\left(-10\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(-10-\sqrt{2}\right)\left(-10+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-10+\sqrt{2}\right)}{100-2}
Square -10. Square \sqrt{2}.
\frac{7\left(-10+\sqrt{2}\right)}{98}
Subtract 2 from 100 to get 98.
\frac{1}{14}\left(-10+\sqrt{2}\right)
Divide 7\left(-10+\sqrt{2}\right) by 98 to get \frac{1}{14}\left(-10+\sqrt{2}\right).
\frac{1}{14}\left(-10\right)+\frac{1}{14}\sqrt{2}
Use the distributive property to multiply \frac{1}{14} by -10+\sqrt{2}.
\frac{-10}{14}+\frac{1}{14}\sqrt{2}
Multiply \frac{1}{14} and -10 to get \frac{-10}{14}.
-\frac{5}{7}+\frac{1}{14}\sqrt{2}
Reduce the fraction \frac{-10}{14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}