Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\left(\sqrt{11}+2\right)}{\left(\sqrt{11}-2\right)\left(\sqrt{11}+2\right)}+\frac{5}{4+\sqrt{11}}
Rationalize the denominator of \frac{7}{\sqrt{11}-2} by multiplying numerator and denominator by \sqrt{11}+2.
\frac{7\left(\sqrt{11}+2\right)}{\left(\sqrt{11}\right)^{2}-2^{2}}+\frac{5}{4+\sqrt{11}}
Consider \left(\sqrt{11}-2\right)\left(\sqrt{11}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(\sqrt{11}+2\right)}{11-4}+\frac{5}{4+\sqrt{11}}
Square \sqrt{11}. Square 2.
\frac{7\left(\sqrt{11}+2\right)}{7}+\frac{5}{4+\sqrt{11}}
Subtract 4 from 11 to get 7.
\sqrt{11}+2+\frac{5}{4+\sqrt{11}}
Cancel out 7 and 7.
\sqrt{11}+2+\frac{5\left(4-\sqrt{11}\right)}{\left(4+\sqrt{11}\right)\left(4-\sqrt{11}\right)}
Rationalize the denominator of \frac{5}{4+\sqrt{11}} by multiplying numerator and denominator by 4-\sqrt{11}.
\sqrt{11}+2+\frac{5\left(4-\sqrt{11}\right)}{4^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(4+\sqrt{11}\right)\left(4-\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{11}+2+\frac{5\left(4-\sqrt{11}\right)}{16-11}
Square 4. Square \sqrt{11}.
\sqrt{11}+2+\frac{5\left(4-\sqrt{11}\right)}{5}
Subtract 11 from 16 to get 5.
\sqrt{11}+2+4-\sqrt{11}
Cancel out 5 and 5.
\sqrt{11}+6-\sqrt{11}
Add 2 and 4 to get 6.
6
Combine \sqrt{11} and -\sqrt{11} to get 0.