Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{329-\left(-3\times 9\right)}{\sqrt{7\times 37-9}\sqrt{7\times 95-81}}
Multiply 7 and 47 to get 329.
\frac{329-\left(-27\right)}{\sqrt{7\times 37-9}\sqrt{7\times 95-81}}
Multiply -3 and 9 to get -27.
\frac{329+27}{\sqrt{7\times 37-9}\sqrt{7\times 95-81}}
The opposite of -27 is 27.
\frac{356}{\sqrt{7\times 37-9}\sqrt{7\times 95-81}}
Add 329 and 27 to get 356.
\frac{356}{\sqrt{259-9}\sqrt{7\times 95-81}}
Multiply 7 and 37 to get 259.
\frac{356}{\sqrt{250}\sqrt{7\times 95-81}}
Subtract 9 from 259 to get 250.
\frac{356}{5\sqrt{10}\sqrt{7\times 95-81}}
Factor 250=5^{2}\times 10. Rewrite the square root of the product \sqrt{5^{2}\times 10} as the product of square roots \sqrt{5^{2}}\sqrt{10}. Take the square root of 5^{2}.
\frac{356}{5\sqrt{10}\sqrt{665-81}}
Multiply 7 and 95 to get 665.
\frac{356}{5\sqrt{10}\sqrt{584}}
Subtract 81 from 665 to get 584.
\frac{356}{5\sqrt{10}\times 2\sqrt{146}}
Factor 584=2^{2}\times 146. Rewrite the square root of the product \sqrt{2^{2}\times 146} as the product of square roots \sqrt{2^{2}}\sqrt{146}. Take the square root of 2^{2}.
\frac{356}{10\sqrt{10}\sqrt{146}}
Multiply 5 and 2 to get 10.
\frac{356}{10\sqrt{1460}}
To multiply \sqrt{10} and \sqrt{146}, multiply the numbers under the square root.
\frac{356\sqrt{1460}}{10\left(\sqrt{1460}\right)^{2}}
Rationalize the denominator of \frac{356}{10\sqrt{1460}} by multiplying numerator and denominator by \sqrt{1460}.
\frac{356\sqrt{1460}}{10\times 1460}
The square of \sqrt{1460} is 1460.
\frac{89\sqrt{1460}}{5\times 730}
Cancel out 2\times 2 in both numerator and denominator.
\frac{89\times 2\sqrt{365}}{5\times 730}
Factor 1460=2^{2}\times 365. Rewrite the square root of the product \sqrt{2^{2}\times 365} as the product of square roots \sqrt{2^{2}}\sqrt{365}. Take the square root of 2^{2}.
\frac{178\sqrt{365}}{5\times 730}
Multiply 89 and 2 to get 178.
\frac{178\sqrt{365}}{3650}
Multiply 5 and 730 to get 3650.
\frac{89}{1825}\sqrt{365}
Divide 178\sqrt{365} by 3650 to get \frac{89}{1825}\sqrt{365}.