Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\sqrt{3}\left(\sqrt{10}-\sqrt{3}\right)}{\left(\sqrt{10}+\sqrt{3}\right)\left(\sqrt{10}-\sqrt{3}\right)}
Rationalize the denominator of \frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{10}-\sqrt{3}.
\frac{7\sqrt{3}\left(\sqrt{10}-\sqrt{3}\right)}{\left(\sqrt{10}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{10}+\sqrt{3}\right)\left(\sqrt{10}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\sqrt{3}\left(\sqrt{10}-\sqrt{3}\right)}{10-3}
Square \sqrt{10}. Square \sqrt{3}.
\frac{7\sqrt{3}\left(\sqrt{10}-\sqrt{3}\right)}{7}
Subtract 3 from 10 to get 7.
\frac{7\sqrt{3}\sqrt{10}-7\left(\sqrt{3}\right)^{2}}{7}
Use the distributive property to multiply 7\sqrt{3} by \sqrt{10}-\sqrt{3}.
\frac{7\sqrt{30}-7\left(\sqrt{3}\right)^{2}}{7}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
\frac{7\sqrt{30}-7\times 3}{7}
The square of \sqrt{3} is 3.
\frac{7\sqrt{30}-21}{7}
Multiply -7 and 3 to get -21.
\sqrt{30}-3
Divide each term of 7\sqrt{30}-21 by 7 to get \sqrt{30}-3.