Evaluate
\frac{352947\sqrt{3}}{5}+\frac{432}{49}\approx 122273.243602333
Factor
\frac{3 {(5764801 \sqrt{3} + 720)}}{245} = 122273.24360233311
Share
Copied to clipboard
\sqrt{27}\times \frac{7^{7}}{35}+\frac{2\times 6^{3}}{7^{2}}
Cancel out 7 and 7.
3\sqrt{3}\times \frac{7^{7}}{35}+\frac{2\times 6^{3}}{7^{2}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
3\sqrt{3}\times \frac{823543}{35}+\frac{2\times 6^{3}}{7^{2}}
Calculate 7 to the power of 7 and get 823543.
3\sqrt{3}\times \frac{117649}{5}+\frac{2\times 6^{3}}{7^{2}}
Reduce the fraction \frac{823543}{35} to lowest terms by extracting and canceling out 7.
\frac{3\times 117649}{5}\sqrt{3}+\frac{2\times 6^{3}}{7^{2}}
Express 3\times \frac{117649}{5} as a single fraction.
\frac{352947}{5}\sqrt{3}+\frac{2\times 6^{3}}{7^{2}}
Multiply 3 and 117649 to get 352947.
\frac{352947}{5}\sqrt{3}+\frac{2\times 216}{7^{2}}
Calculate 6 to the power of 3 and get 216.
\frac{352947}{5}\sqrt{3}+\frac{432}{7^{2}}
Multiply 2 and 216 to get 432.
\frac{352947}{5}\sqrt{3}+\frac{432}{49}
Calculate 7 to the power of 2 and get 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}