\frac { 7 \frac { 5 } { 6 } - ( \frac { 1 } { 4 } ) ( \frac { 9 } { 3 } ) } { \frac { 3 } { 5 } ( \frac { 7 } { 4 } ) + ( \frac { 3 } { 7 } }
Evaluate
\frac{2975}{621}\approx 4.790660225
Factor
\frac{5 ^ {2} \cdot 7 \cdot 17}{3 ^ {3} \cdot 23} = 4\frac{491}{621} = 4.790660225442834
Share
Copied to clipboard
\frac{\frac{42+5}{6}-\frac{1}{4}\times \frac{9}{3}}{\frac{3}{5}\times \frac{7}{4}+\frac{3}{7}}
Multiply 7 and 6 to get 42.
\frac{\frac{47}{6}-\frac{1}{4}\times \frac{9}{3}}{\frac{3}{5}\times \frac{7}{4}+\frac{3}{7}}
Add 42 and 5 to get 47.
\frac{\frac{47}{6}-\frac{1}{4}\times 3}{\frac{3}{5}\times \frac{7}{4}+\frac{3}{7}}
Divide 9 by 3 to get 3.
\frac{\frac{47}{6}-\frac{3}{4}}{\frac{3}{5}\times \frac{7}{4}+\frac{3}{7}}
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.
\frac{\frac{94}{12}-\frac{9}{12}}{\frac{3}{5}\times \frac{7}{4}+\frac{3}{7}}
Least common multiple of 6 and 4 is 12. Convert \frac{47}{6} and \frac{3}{4} to fractions with denominator 12.
\frac{\frac{94-9}{12}}{\frac{3}{5}\times \frac{7}{4}+\frac{3}{7}}
Since \frac{94}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{85}{12}}{\frac{3}{5}\times \frac{7}{4}+\frac{3}{7}}
Subtract 9 from 94 to get 85.
\frac{\frac{85}{12}}{\frac{3\times 7}{5\times 4}+\frac{3}{7}}
Multiply \frac{3}{5} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{85}{12}}{\frac{21}{20}+\frac{3}{7}}
Do the multiplications in the fraction \frac{3\times 7}{5\times 4}.
\frac{\frac{85}{12}}{\frac{147}{140}+\frac{60}{140}}
Least common multiple of 20 and 7 is 140. Convert \frac{21}{20} and \frac{3}{7} to fractions with denominator 140.
\frac{\frac{85}{12}}{\frac{147+60}{140}}
Since \frac{147}{140} and \frac{60}{140} have the same denominator, add them by adding their numerators.
\frac{\frac{85}{12}}{\frac{207}{140}}
Add 147 and 60 to get 207.
\frac{85}{12}\times \frac{140}{207}
Divide \frac{85}{12} by \frac{207}{140} by multiplying \frac{85}{12} by the reciprocal of \frac{207}{140}.
\frac{85\times 140}{12\times 207}
Multiply \frac{85}{12} times \frac{140}{207} by multiplying numerator times numerator and denominator times denominator.
\frac{11900}{2484}
Do the multiplications in the fraction \frac{85\times 140}{12\times 207}.
\frac{2975}{621}
Reduce the fraction \frac{11900}{2484} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}