Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{7+i}{-7-24i}
Calculate 3-4i to the power of 2 and get -7-24i.
\frac{\left(7+i\right)\left(-7+24i\right)}{\left(-7-24i\right)\left(-7+24i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -7+24i.
\frac{-73+161i}{625}
Do the multiplications in \frac{\left(7+i\right)\left(-7+24i\right)}{\left(-7-24i\right)\left(-7+24i\right)}.
-\frac{73}{625}+\frac{161}{625}i
Divide -73+161i by 625 to get -\frac{73}{625}+\frac{161}{625}i.
Re(\frac{7+i}{-7-24i})
Calculate 3-4i to the power of 2 and get -7-24i.
Re(\frac{\left(7+i\right)\left(-7+24i\right)}{\left(-7-24i\right)\left(-7+24i\right)})
Multiply both numerator and denominator of \frac{7+i}{-7-24i} by the complex conjugate of the denominator, -7+24i.
Re(\frac{-73+161i}{625})
Do the multiplications in \frac{\left(7+i\right)\left(-7+24i\right)}{\left(-7-24i\right)\left(-7+24i\right)}.
Re(-\frac{73}{625}+\frac{161}{625}i)
Divide -73+161i by 625 to get -\frac{73}{625}+\frac{161}{625}i.
-\frac{73}{625}
The real part of -\frac{73}{625}+\frac{161}{625}i is -\frac{73}{625}.