Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+9i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-i.
\frac{\left(7+9i\right)\left(3-i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+9i\right)\left(3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\times 3+7\left(-i\right)+9i\times 3+9\left(-1\right)i^{2}}{10}
Multiply complex numbers 7+9i and 3-i like you multiply binomials.
\frac{7\times 3+7\left(-i\right)+9i\times 3+9\left(-1\right)\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{21-7i+27i+9}{10}
Do the multiplications in 7\times 3+7\left(-i\right)+9i\times 3+9\left(-1\right)\left(-1\right).
\frac{21+9+\left(-7+27\right)i}{10}
Combine the real and imaginary parts in 21-7i+27i+9.
\frac{30+20i}{10}
Do the additions in 21+9+\left(-7+27\right)i.
3+2i
Divide 30+20i by 10 to get 3+2i.
Re(\frac{\left(7+9i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{7+9i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{\left(7+9i\right)\left(3-i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(7+9i\right)\left(3-i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\times 3+7\left(-i\right)+9i\times 3+9\left(-1\right)i^{2}}{10})
Multiply complex numbers 7+9i and 3-i like you multiply binomials.
Re(\frac{7\times 3+7\left(-i\right)+9i\times 3+9\left(-1\right)\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{21-7i+27i+9}{10})
Do the multiplications in 7\times 3+7\left(-i\right)+9i\times 3+9\left(-1\right)\left(-1\right).
Re(\frac{21+9+\left(-7+27\right)i}{10})
Combine the real and imaginary parts in 21-7i+27i+9.
Re(\frac{30+20i}{10})
Do the additions in 21+9+\left(-7+27\right)i.
Re(3+2i)
Divide 30+20i by 10 to get 3+2i.
3
The real part of 3+2i is 3.