Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+4i\right)\left(5-3i\right)}{\left(5+3i\right)\left(5-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-3i.
\frac{\left(7+4i\right)\left(5-3i\right)}{5^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+4i\right)\left(5-3i\right)}{34}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\times 5+7\times \left(-3i\right)+4i\times 5+4\left(-3\right)i^{2}}{34}
Multiply complex numbers 7+4i and 5-3i like you multiply binomials.
\frac{7\times 5+7\times \left(-3i\right)+4i\times 5+4\left(-3\right)\left(-1\right)}{34}
By definition, i^{2} is -1.
\frac{35-21i+20i+12}{34}
Do the multiplications in 7\times 5+7\times \left(-3i\right)+4i\times 5+4\left(-3\right)\left(-1\right).
\frac{35+12+\left(-21+20\right)i}{34}
Combine the real and imaginary parts in 35-21i+20i+12.
\frac{47-i}{34}
Do the additions in 35+12+\left(-21+20\right)i.
\frac{47}{34}-\frac{1}{34}i
Divide 47-i by 34 to get \frac{47}{34}-\frac{1}{34}i.
Re(\frac{\left(7+4i\right)\left(5-3i\right)}{\left(5+3i\right)\left(5-3i\right)})
Multiply both numerator and denominator of \frac{7+4i}{5+3i} by the complex conjugate of the denominator, 5-3i.
Re(\frac{\left(7+4i\right)\left(5-3i\right)}{5^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(7+4i\right)\left(5-3i\right)}{34})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\times 5+7\times \left(-3i\right)+4i\times 5+4\left(-3\right)i^{2}}{34})
Multiply complex numbers 7+4i and 5-3i like you multiply binomials.
Re(\frac{7\times 5+7\times \left(-3i\right)+4i\times 5+4\left(-3\right)\left(-1\right)}{34})
By definition, i^{2} is -1.
Re(\frac{35-21i+20i+12}{34})
Do the multiplications in 7\times 5+7\times \left(-3i\right)+4i\times 5+4\left(-3\right)\left(-1\right).
Re(\frac{35+12+\left(-21+20\right)i}{34})
Combine the real and imaginary parts in 35-21i+20i+12.
Re(\frac{47-i}{34})
Do the additions in 35+12+\left(-21+20\right)i.
Re(\frac{47}{34}-\frac{1}{34}i)
Divide 47-i by 34 to get \frac{47}{34}-\frac{1}{34}i.
\frac{47}{34}
The real part of \frac{47}{34}-\frac{1}{34}i is \frac{47}{34}.