Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+3i\right)\left(8+9i\right)}{\left(8-9i\right)\left(8+9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+9i.
\frac{\left(7+3i\right)\left(8+9i\right)}{8^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+3i\right)\left(8+9i\right)}{145}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\times 8+7\times \left(9i\right)+3i\times 8+3\times 9i^{2}}{145}
Multiply complex numbers 7+3i and 8+9i like you multiply binomials.
\frac{7\times 8+7\times \left(9i\right)+3i\times 8+3\times 9\left(-1\right)}{145}
By definition, i^{2} is -1.
\frac{56+63i+24i-27}{145}
Do the multiplications in 7\times 8+7\times \left(9i\right)+3i\times 8+3\times 9\left(-1\right).
\frac{56-27+\left(63+24\right)i}{145}
Combine the real and imaginary parts in 56+63i+24i-27.
\frac{29+87i}{145}
Do the additions in 56-27+\left(63+24\right)i.
\frac{1}{5}+\frac{3}{5}i
Divide 29+87i by 145 to get \frac{1}{5}+\frac{3}{5}i.
Re(\frac{\left(7+3i\right)\left(8+9i\right)}{\left(8-9i\right)\left(8+9i\right)})
Multiply both numerator and denominator of \frac{7+3i}{8-9i} by the complex conjugate of the denominator, 8+9i.
Re(\frac{\left(7+3i\right)\left(8+9i\right)}{8^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(7+3i\right)\left(8+9i\right)}{145})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\times 8+7\times \left(9i\right)+3i\times 8+3\times 9i^{2}}{145})
Multiply complex numbers 7+3i and 8+9i like you multiply binomials.
Re(\frac{7\times 8+7\times \left(9i\right)+3i\times 8+3\times 9\left(-1\right)}{145})
By definition, i^{2} is -1.
Re(\frac{56+63i+24i-27}{145})
Do the multiplications in 7\times 8+7\times \left(9i\right)+3i\times 8+3\times 9\left(-1\right).
Re(\frac{56-27+\left(63+24\right)i}{145})
Combine the real and imaginary parts in 56+63i+24i-27.
Re(\frac{29+87i}{145})
Do the additions in 56-27+\left(63+24\right)i.
Re(\frac{1}{5}+\frac{3}{5}i)
Divide 29+87i by 145 to get \frac{1}{5}+\frac{3}{5}i.
\frac{1}{5}
The real part of \frac{1}{5}+\frac{3}{5}i is \frac{1}{5}.