Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{10}{8-9i}
Add 7 and 3 to get 10.
\frac{10\left(8+9i\right)}{\left(8-9i\right)\left(8+9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+9i.
\frac{10\left(8+9i\right)}{8^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10\left(8+9i\right)}{145}
By definition, i^{2} is -1. Calculate the denominator.
\frac{10\times 8+10\times \left(9i\right)}{145}
Multiply 10 times 8+9i.
\frac{80+90i}{145}
Do the multiplications in 10\times 8+10\times \left(9i\right).
\frac{16}{29}+\frac{18}{29}i
Divide 80+90i by 145 to get \frac{16}{29}+\frac{18}{29}i.
Re(\frac{10}{8-9i})
Add 7 and 3 to get 10.
Re(\frac{10\left(8+9i\right)}{\left(8-9i\right)\left(8+9i\right)})
Multiply both numerator and denominator of \frac{10}{8-9i} by the complex conjugate of the denominator, 8+9i.
Re(\frac{10\left(8+9i\right)}{8^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{10\left(8+9i\right)}{145})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{10\times 8+10\times \left(9i\right)}{145})
Multiply 10 times 8+9i.
Re(\frac{80+90i}{145})
Do the multiplications in 10\times 8+10\times \left(9i\right).
Re(\frac{16}{29}+\frac{18}{29}i)
Divide 80+90i by 145 to get \frac{16}{29}+\frac{18}{29}i.
\frac{16}{29}
The real part of \frac{16}{29}+\frac{18}{29}i is \frac{16}{29}.