Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}
Rationalize the denominator of \frac{7+3\sqrt{5}}{3+\sqrt{5}} by multiplying numerator and denominator by 3-\sqrt{5}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}
Consider \left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{9-5}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}
Square 3. Square \sqrt{5}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}
Subtract 5 from 9 to get 4.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}
Rationalize the denominator of \frac{7-3\sqrt{5}}{3-\sqrt{5}} by multiplying numerator and denominator by 3+\sqrt{5}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{9-5}
Square 3. Square \sqrt{5}.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}-\frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}
Subtract 5 from 9 to get 4.
\frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}
Since \frac{\left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4} and \frac{\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{21-7\sqrt{5}+9\sqrt{5}-15-21-7\sqrt{5}+9\sqrt{5}+15}{4}
Do the multiplications in \left(7+3\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(7-3\sqrt{5}\right)\left(3+\sqrt{5}\right).
\frac{4\sqrt{5}}{4}
Do the calculations in 21-7\sqrt{5}+9\sqrt{5}-15-21-7\sqrt{5}+9\sqrt{5}+15.
\sqrt{5}
Cancel out 4 and 4.