Evaluate
\frac{28\sqrt{6}}{43}\approx 1.595016577
Share
Copied to clipboard
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{\left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right)}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Rationalize the denominator of \frac{7+\sqrt{6}}{7-\sqrt{6}} by multiplying numerator and denominator by 7+\sqrt{6}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Consider \left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{49-6}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Square 7. Square \sqrt{6}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Subtract 6 from 49 to get 43.
\frac{\left(7+\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Multiply 7+\sqrt{6} and 7+\sqrt{6} to get \left(7+\sqrt{6}\right)^{2}.
\frac{49+14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+\sqrt{6}\right)^{2}.
\frac{49+14\sqrt{6}+6}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
The square of \sqrt{6} is 6.
\frac{55+14\sqrt{6}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Add 49 and 6 to get 55.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
Rationalize the denominator of \frac{7-\sqrt{6}}{7+\sqrt{6}} by multiplying numerator and denominator by 7-\sqrt{6}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{49-6}
Square 7. Square \sqrt{6}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{43}
Subtract 6 from 49 to get 43.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)^{2}}{43}
Multiply 7-\sqrt{6} and 7-\sqrt{6} to get \left(7-\sqrt{6}\right)^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-\sqrt{6}\right)^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+6}{43}
The square of \sqrt{6} is 6.
\frac{55+14\sqrt{6}}{43}-\frac{55-14\sqrt{6}}{43}
Add 49 and 6 to get 55.
\frac{55+14\sqrt{6}-\left(55-14\sqrt{6}\right)}{43}
Since \frac{55+14\sqrt{6}}{43} and \frac{55-14\sqrt{6}}{43} have the same denominator, subtract them by subtracting their numerators.
\frac{55+14\sqrt{6}-55+14\sqrt{6}}{43}
Do the multiplications in 55+14\sqrt{6}-\left(55-14\sqrt{6}\right).
\frac{28\sqrt{6}}{43}
Do the calculations in 55+14\sqrt{6}-55+14\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}