Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{\left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right)}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Rationalize the denominator of \frac{7+\sqrt{6}}{7-\sqrt{6}} by multiplying numerator and denominator by 7+\sqrt{6}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Consider \left(7-\sqrt{6}\right)\left(7+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{49-6}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Square 7. Square \sqrt{6}.
\frac{\left(7+\sqrt{6}\right)\left(7+\sqrt{6}\right)}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Subtract 6 from 49 to get 43.
\frac{\left(7+\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Multiply 7+\sqrt{6} and 7+\sqrt{6} to get \left(7+\sqrt{6}\right)^{2}.
\frac{49+14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+\sqrt{6}\right)^{2}.
\frac{49+14\sqrt{6}+6}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
The square of \sqrt{6} is 6.
\frac{55+14\sqrt{6}}{43}-\frac{7-\sqrt{6}}{7+\sqrt{6}}
Add 49 and 6 to get 55.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{\left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right)}
Rationalize the denominator of \frac{7-\sqrt{6}}{7+\sqrt{6}} by multiplying numerator and denominator by 7-\sqrt{6}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{7^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(7+\sqrt{6}\right)\left(7-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{49-6}
Square 7. Square \sqrt{6}.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)\left(7-\sqrt{6}\right)}{43}
Subtract 6 from 49 to get 43.
\frac{55+14\sqrt{6}}{43}-\frac{\left(7-\sqrt{6}\right)^{2}}{43}
Multiply 7-\sqrt{6} and 7-\sqrt{6} to get \left(7-\sqrt{6}\right)^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+\left(\sqrt{6}\right)^{2}}{43}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-\sqrt{6}\right)^{2}.
\frac{55+14\sqrt{6}}{43}-\frac{49-14\sqrt{6}+6}{43}
The square of \sqrt{6} is 6.
\frac{55+14\sqrt{6}}{43}-\frac{55-14\sqrt{6}}{43}
Add 49 and 6 to get 55.
\frac{55+14\sqrt{6}-\left(55-14\sqrt{6}\right)}{43}
Since \frac{55+14\sqrt{6}}{43} and \frac{55-14\sqrt{6}}{43} have the same denominator, subtract them by subtracting their numerators.
\frac{55+14\sqrt{6}-55+14\sqrt{6}}{43}
Do the multiplications in 55+14\sqrt{6}-\left(55-14\sqrt{6}\right).
\frac{28\sqrt{6}}{43}
Do the calculations in 55+14\sqrt{6}-55+14\sqrt{6}.