Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+\sqrt{3}\right)\left(7+\sqrt{3}\right)}{\left(7-\sqrt{3}\right)\left(7+\sqrt{3}\right)}
Rationalize the denominator of \frac{7+\sqrt{3}}{7-\sqrt{3}} by multiplying numerator and denominator by 7+\sqrt{3}.
\frac{\left(7+\sqrt{3}\right)\left(7+\sqrt{3}\right)}{7^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(7-\sqrt{3}\right)\left(7+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+\sqrt{3}\right)\left(7+\sqrt{3}\right)}{49-3}
Square 7. Square \sqrt{3}.
\frac{\left(7+\sqrt{3}\right)\left(7+\sqrt{3}\right)}{46}
Subtract 3 from 49 to get 46.
\frac{\left(7+\sqrt{3}\right)^{2}}{46}
Multiply 7+\sqrt{3} and 7+\sqrt{3} to get \left(7+\sqrt{3}\right)^{2}.
\frac{49+14\sqrt{3}+\left(\sqrt{3}\right)^{2}}{46}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+\sqrt{3}\right)^{2}.
\frac{49+14\sqrt{3}+3}{46}
The square of \sqrt{3} is 3.
\frac{52+14\sqrt{3}}{46}
Add 49 and 3 to get 52.