Evaluate
\frac{85}{32}=2.65625
Factor
\frac{5 \cdot 17}{2 ^ {5}} = 2\frac{21}{32} = 2.65625
Share
Copied to clipboard
\begin{array}{l}\phantom{256)}\phantom{1}\\256\overline{)680}\\\end{array}
Use the 1^{st} digit 6 from dividend 680
\begin{array}{l}\phantom{256)}0\phantom{2}\\256\overline{)680}\\\end{array}
Since 6 is less than 256, use the next digit 8 from dividend 680 and add 0 to the quotient
\begin{array}{l}\phantom{256)}0\phantom{3}\\256\overline{)680}\\\end{array}
Use the 2^{nd} digit 8 from dividend 680
\begin{array}{l}\phantom{256)}00\phantom{4}\\256\overline{)680}\\\end{array}
Since 68 is less than 256, use the next digit 0 from dividend 680 and add 0 to the quotient
\begin{array}{l}\phantom{256)}00\phantom{5}\\256\overline{)680}\\\end{array}
Use the 3^{rd} digit 0 from dividend 680
\begin{array}{l}\phantom{256)}002\phantom{6}\\256\overline{)680}\\\phantom{256)}\underline{\phantom{}512\phantom{}}\\\phantom{256)}168\\\end{array}
Find closest multiple of 256 to 680. We see that 2 \times 256 = 512 is the nearest. Now subtract 512 from 680 to get reminder 168. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }168
Since 168 is less than 256, stop the division. The reminder is 168. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}