Evaluate
\frac{678}{577}\approx 1.175043328
Factor
\frac{2 \cdot 3 \cdot 113}{577} = 1\frac{101}{577} = 1.175043327556326
Share
Copied to clipboard
\begin{array}{l}\phantom{577)}\phantom{1}\\577\overline{)678}\\\end{array}
Use the 1^{st} digit 6 from dividend 678
\begin{array}{l}\phantom{577)}0\phantom{2}\\577\overline{)678}\\\end{array}
Since 6 is less than 577, use the next digit 7 from dividend 678 and add 0 to the quotient
\begin{array}{l}\phantom{577)}0\phantom{3}\\577\overline{)678}\\\end{array}
Use the 2^{nd} digit 7 from dividend 678
\begin{array}{l}\phantom{577)}00\phantom{4}\\577\overline{)678}\\\end{array}
Since 67 is less than 577, use the next digit 8 from dividend 678 and add 0 to the quotient
\begin{array}{l}\phantom{577)}00\phantom{5}\\577\overline{)678}\\\end{array}
Use the 3^{rd} digit 8 from dividend 678
\begin{array}{l}\phantom{577)}001\phantom{6}\\577\overline{)678}\\\phantom{577)}\underline{\phantom{}577\phantom{}}\\\phantom{577)}101\\\end{array}
Find closest multiple of 577 to 678. We see that 1 \times 577 = 577 is the nearest. Now subtract 577 from 678 to get reminder 101. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }101
Since 101 is less than 577, stop the division. The reminder is 101. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}