Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\begin{array}{l}\phantom{446)}\phantom{1}\\446\overline{)669}\\\end{array}
Use the 1^{st} digit 6 from dividend 669
\begin{array}{l}\phantom{446)}0\phantom{2}\\446\overline{)669}\\\end{array}
Since 6 is less than 446, use the next digit 6 from dividend 669 and add 0 to the quotient
\begin{array}{l}\phantom{446)}0\phantom{3}\\446\overline{)669}\\\end{array}
Use the 2^{nd} digit 6 from dividend 669
\begin{array}{l}\phantom{446)}00\phantom{4}\\446\overline{)669}\\\end{array}
Since 66 is less than 446, use the next digit 9 from dividend 669 and add 0 to the quotient
\begin{array}{l}\phantom{446)}00\phantom{5}\\446\overline{)669}\\\end{array}
Use the 3^{rd} digit 9 from dividend 669
\begin{array}{l}\phantom{446)}001\phantom{6}\\446\overline{)669}\\\phantom{446)}\underline{\phantom{}446\phantom{}}\\\phantom{446)}223\\\end{array}
Find closest multiple of 446 to 669. We see that 1 \times 446 = 446 is the nearest. Now subtract 446 from 669 to get reminder 223. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }223
Since 223 is less than 446, stop the division. The reminder is 223. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}