Evaluate
\frac{663}{176}\approx 3.767045455
Factor
\frac{3 \cdot 13 \cdot 17}{2 ^ {4} \cdot 11} = 3\frac{135}{176} = 3.7670454545454546
Share
Copied to clipboard
\begin{array}{l}\phantom{176)}\phantom{1}\\176\overline{)663}\\\end{array}
Use the 1^{st} digit 6 from dividend 663
\begin{array}{l}\phantom{176)}0\phantom{2}\\176\overline{)663}\\\end{array}
Since 6 is less than 176, use the next digit 6 from dividend 663 and add 0 to the quotient
\begin{array}{l}\phantom{176)}0\phantom{3}\\176\overline{)663}\\\end{array}
Use the 2^{nd} digit 6 from dividend 663
\begin{array}{l}\phantom{176)}00\phantom{4}\\176\overline{)663}\\\end{array}
Since 66 is less than 176, use the next digit 3 from dividend 663 and add 0 to the quotient
\begin{array}{l}\phantom{176)}00\phantom{5}\\176\overline{)663}\\\end{array}
Use the 3^{rd} digit 3 from dividend 663
\begin{array}{l}\phantom{176)}003\phantom{6}\\176\overline{)663}\\\phantom{176)}\underline{\phantom{}528\phantom{}}\\\phantom{176)}135\\\end{array}
Find closest multiple of 176 to 663. We see that 3 \times 176 = 528 is the nearest. Now subtract 528 from 663 to get reminder 135. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }135
Since 135 is less than 176, stop the division. The reminder is 135. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}