Verify
false
Share
Copied to clipboard
\frac{-6.4}{\frac{136.8+291.2}{\frac{1}{20}+\frac{1}{20}}}=-70.69
Subtract 72.6 from 66.2 to get -6.4.
\frac{-6.4}{\frac{428}{\frac{1}{20}+\frac{1}{20}}}=-70.69
Add 136.8 and 291.2 to get 428.
\frac{-6.4}{\frac{428}{\frac{1+1}{20}}}=-70.69
Since \frac{1}{20} and \frac{1}{20} have the same denominator, add them by adding their numerators.
\frac{-6.4}{\frac{428}{\frac{2}{20}}}=-70.69
Add 1 and 1 to get 2.
\frac{-6.4}{\frac{428}{\frac{1}{10}}}=-70.69
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
\frac{-6.4}{428\times 10}=-70.69
Divide 428 by \frac{1}{10} by multiplying 428 by the reciprocal of \frac{1}{10}.
\frac{-6.4}{4280}=-70.69
Multiply 428 and 10 to get 4280.
\frac{-64}{42800}=-70.69
Expand \frac{-6.4}{4280} by multiplying both numerator and the denominator by 10.
-\frac{4}{2675}=-70.69
Reduce the fraction \frac{-64}{42800} to lowest terms by extracting and canceling out 16.
-\frac{4}{2675}=-\frac{7069}{100}
Convert decimal number -70.69 to fraction -\frac{7069}{100}.
-\frac{16}{10700}=-\frac{756383}{10700}
Least common multiple of 2675 and 100 is 10700. Convert -\frac{4}{2675} and -\frac{7069}{100} to fractions with denominator 10700.
\text{false}
Compare -\frac{16}{10700} and -\frac{756383}{10700}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}