Evaluate
\frac{1634}{225}\approx 7.262222222
Factor
\frac{2 \cdot 19 \cdot 43}{3 ^ {2} \cdot 5 ^ {2}} = 7\frac{59}{225} = 7.262222222222222
Share
Copied to clipboard
\begin{array}{l}\phantom{900)}\phantom{1}\\900\overline{)6536}\\\end{array}
Use the 1^{st} digit 6 from dividend 6536
\begin{array}{l}\phantom{900)}0\phantom{2}\\900\overline{)6536}\\\end{array}
Since 6 is less than 900, use the next digit 5 from dividend 6536 and add 0 to the quotient
\begin{array}{l}\phantom{900)}0\phantom{3}\\900\overline{)6536}\\\end{array}
Use the 2^{nd} digit 5 from dividend 6536
\begin{array}{l}\phantom{900)}00\phantom{4}\\900\overline{)6536}\\\end{array}
Since 65 is less than 900, use the next digit 3 from dividend 6536 and add 0 to the quotient
\begin{array}{l}\phantom{900)}00\phantom{5}\\900\overline{)6536}\\\end{array}
Use the 3^{rd} digit 3 from dividend 6536
\begin{array}{l}\phantom{900)}000\phantom{6}\\900\overline{)6536}\\\end{array}
Since 653 is less than 900, use the next digit 6 from dividend 6536 and add 0 to the quotient
\begin{array}{l}\phantom{900)}000\phantom{7}\\900\overline{)6536}\\\end{array}
Use the 4^{th} digit 6 from dividend 6536
\begin{array}{l}\phantom{900)}0007\phantom{8}\\900\overline{)6536}\\\phantom{900)}\underline{\phantom{}6300\phantom{}}\\\phantom{900)9}236\\\end{array}
Find closest multiple of 900 to 6536. We see that 7 \times 900 = 6300 is the nearest. Now subtract 6300 from 6536 to get reminder 236. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }236
Since 236 is less than 900, stop the division. The reminder is 236. The topmost line 0007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}