Evaluate
\frac{325}{41}\approx 7.926829268
Factor
\frac{5 ^ {2} \cdot 13}{41} = 7\frac{38}{41} = 7.926829268292683
Share
Copied to clipboard
\begin{array}{l}\phantom{82)}\phantom{1}\\82\overline{)650}\\\end{array}
Use the 1^{st} digit 6 from dividend 650
\begin{array}{l}\phantom{82)}0\phantom{2}\\82\overline{)650}\\\end{array}
Since 6 is less than 82, use the next digit 5 from dividend 650 and add 0 to the quotient
\begin{array}{l}\phantom{82)}0\phantom{3}\\82\overline{)650}\\\end{array}
Use the 2^{nd} digit 5 from dividend 650
\begin{array}{l}\phantom{82)}00\phantom{4}\\82\overline{)650}\\\end{array}
Since 65 is less than 82, use the next digit 0 from dividend 650 and add 0 to the quotient
\begin{array}{l}\phantom{82)}00\phantom{5}\\82\overline{)650}\\\end{array}
Use the 3^{rd} digit 0 from dividend 650
\begin{array}{l}\phantom{82)}007\phantom{6}\\82\overline{)650}\\\phantom{82)}\underline{\phantom{}574\phantom{}}\\\phantom{82)9}76\\\end{array}
Find closest multiple of 82 to 650. We see that 7 \times 82 = 574 is the nearest. Now subtract 574 from 650 to get reminder 76. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }76
Since 76 is less than 82, stop the division. The reminder is 76. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}