Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{65}{16}\times 130=25+169-x^{2}
Multiply both sides by 130.
\frac{4225}{8}=25+169-x^{2}
Multiply \frac{65}{16} and 130 to get \frac{4225}{8}.
\frac{4225}{8}=194-x^{2}
Add 25 and 169 to get 194.
194-x^{2}=\frac{4225}{8}
Swap sides so that all variable terms are on the left hand side.
-x^{2}=\frac{4225}{8}-194
Subtract 194 from both sides.
-x^{2}=\frac{2673}{8}
Subtract 194 from \frac{4225}{8} to get \frac{2673}{8}.
x^{2}=\frac{\frac{2673}{8}}{-1}
Divide both sides by -1.
x^{2}=\frac{2673}{8\left(-1\right)}
Express \frac{\frac{2673}{8}}{-1} as a single fraction.
x^{2}=\frac{2673}{-8}
Multiply 8 and -1 to get -8.
x^{2}=-\frac{2673}{8}
Fraction \frac{2673}{-8} can be rewritten as -\frac{2673}{8} by extracting the negative sign.
x=\frac{9\sqrt{66}i}{4} x=-\frac{9\sqrt{66}i}{4}
The equation is now solved.
\frac{65}{16}\times 130=25+169-x^{2}
Multiply both sides by 130.
\frac{4225}{8}=25+169-x^{2}
Multiply \frac{65}{16} and 130 to get \frac{4225}{8}.
\frac{4225}{8}=194-x^{2}
Add 25 and 169 to get 194.
194-x^{2}=\frac{4225}{8}
Swap sides so that all variable terms are on the left hand side.
194-x^{2}-\frac{4225}{8}=0
Subtract \frac{4225}{8} from both sides.
-\frac{2673}{8}-x^{2}=0
Subtract \frac{4225}{8} from 194 to get -\frac{2673}{8}.
-x^{2}-\frac{2673}{8}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-\frac{2673}{8}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -\frac{2673}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-\frac{2673}{8}\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-\frac{2673}{8}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-\frac{2673}{2}}}{2\left(-1\right)}
Multiply 4 times -\frac{2673}{8}.
x=\frac{0±\frac{9\sqrt{66}i}{2}}{2\left(-1\right)}
Take the square root of -\frac{2673}{2}.
x=\frac{0±\frac{9\sqrt{66}i}{2}}{-2}
Multiply 2 times -1.
x=-\frac{9\sqrt{66}i}{4}
Now solve the equation x=\frac{0±\frac{9\sqrt{66}i}{2}}{-2} when ± is plus.
x=\frac{9\sqrt{66}i}{4}
Now solve the equation x=\frac{0±\frac{9\sqrt{66}i}{2}}{-2} when ± is minus.
x=-\frac{9\sqrt{66}i}{4} x=\frac{9\sqrt{66}i}{4}
The equation is now solved.