Solve for x
x=-64
x=50
Graph
Share
Copied to clipboard
\left(x+14\right)\times 6400-x\times 6400=28x\left(x+14\right)
Variable x cannot be equal to any of the values -14,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+14\right), the least common multiple of x,x+14.
6400x+89600-x\times 6400=28x\left(x+14\right)
Use the distributive property to multiply x+14 by 6400.
6400x+89600-x\times 6400=28x^{2}+392x
Use the distributive property to multiply 28x by x+14.
6400x+89600-x\times 6400-28x^{2}=392x
Subtract 28x^{2} from both sides.
6400x+89600-x\times 6400-28x^{2}-392x=0
Subtract 392x from both sides.
6008x+89600-x\times 6400-28x^{2}=0
Combine 6400x and -392x to get 6008x.
6008x+89600-6400x-28x^{2}=0
Multiply -1 and 6400 to get -6400.
-392x+89600-28x^{2}=0
Combine 6008x and -6400x to get -392x.
-14x+3200-x^{2}=0
Divide both sides by 28.
-x^{2}-14x+3200=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-14 ab=-3200=-3200
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+3200. To find a and b, set up a system to be solved.
1,-3200 2,-1600 4,-800 5,-640 8,-400 10,-320 16,-200 20,-160 25,-128 32,-100 40,-80 50,-64
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -3200.
1-3200=-3199 2-1600=-1598 4-800=-796 5-640=-635 8-400=-392 10-320=-310 16-200=-184 20-160=-140 25-128=-103 32-100=-68 40-80=-40 50-64=-14
Calculate the sum for each pair.
a=50 b=-64
The solution is the pair that gives sum -14.
\left(-x^{2}+50x\right)+\left(-64x+3200\right)
Rewrite -x^{2}-14x+3200 as \left(-x^{2}+50x\right)+\left(-64x+3200\right).
x\left(-x+50\right)+64\left(-x+50\right)
Factor out x in the first and 64 in the second group.
\left(-x+50\right)\left(x+64\right)
Factor out common term -x+50 by using distributive property.
x=50 x=-64
To find equation solutions, solve -x+50=0 and x+64=0.
\left(x+14\right)\times 6400-x\times 6400=28x\left(x+14\right)
Variable x cannot be equal to any of the values -14,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+14\right), the least common multiple of x,x+14.
6400x+89600-x\times 6400=28x\left(x+14\right)
Use the distributive property to multiply x+14 by 6400.
6400x+89600-x\times 6400=28x^{2}+392x
Use the distributive property to multiply 28x by x+14.
6400x+89600-x\times 6400-28x^{2}=392x
Subtract 28x^{2} from both sides.
6400x+89600-x\times 6400-28x^{2}-392x=0
Subtract 392x from both sides.
6008x+89600-x\times 6400-28x^{2}=0
Combine 6400x and -392x to get 6008x.
6008x+89600-6400x-28x^{2}=0
Multiply -1 and 6400 to get -6400.
-392x+89600-28x^{2}=0
Combine 6008x and -6400x to get -392x.
-28x^{2}-392x+89600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-392\right)±\sqrt{\left(-392\right)^{2}-4\left(-28\right)\times 89600}}{2\left(-28\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -28 for a, -392 for b, and 89600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-392\right)±\sqrt{153664-4\left(-28\right)\times 89600}}{2\left(-28\right)}
Square -392.
x=\frac{-\left(-392\right)±\sqrt{153664+112\times 89600}}{2\left(-28\right)}
Multiply -4 times -28.
x=\frac{-\left(-392\right)±\sqrt{153664+10035200}}{2\left(-28\right)}
Multiply 112 times 89600.
x=\frac{-\left(-392\right)±\sqrt{10188864}}{2\left(-28\right)}
Add 153664 to 10035200.
x=\frac{-\left(-392\right)±3192}{2\left(-28\right)}
Take the square root of 10188864.
x=\frac{392±3192}{2\left(-28\right)}
The opposite of -392 is 392.
x=\frac{392±3192}{-56}
Multiply 2 times -28.
x=\frac{3584}{-56}
Now solve the equation x=\frac{392±3192}{-56} when ± is plus. Add 392 to 3192.
x=-64
Divide 3584 by -56.
x=-\frac{2800}{-56}
Now solve the equation x=\frac{392±3192}{-56} when ± is minus. Subtract 3192 from 392.
x=50
Divide -2800 by -56.
x=-64 x=50
The equation is now solved.
\left(x+14\right)\times 6400-x\times 6400=28x\left(x+14\right)
Variable x cannot be equal to any of the values -14,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+14\right), the least common multiple of x,x+14.
6400x+89600-x\times 6400=28x\left(x+14\right)
Use the distributive property to multiply x+14 by 6400.
6400x+89600-x\times 6400=28x^{2}+392x
Use the distributive property to multiply 28x by x+14.
6400x+89600-x\times 6400-28x^{2}=392x
Subtract 28x^{2} from both sides.
6400x+89600-x\times 6400-28x^{2}-392x=0
Subtract 392x from both sides.
6008x+89600-x\times 6400-28x^{2}=0
Combine 6400x and -392x to get 6008x.
6008x-x\times 6400-28x^{2}=-89600
Subtract 89600 from both sides. Anything subtracted from zero gives its negation.
6008x-6400x-28x^{2}=-89600
Multiply -1 and 6400 to get -6400.
-392x-28x^{2}=-89600
Combine 6008x and -6400x to get -392x.
-28x^{2}-392x=-89600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-28x^{2}-392x}{-28}=-\frac{89600}{-28}
Divide both sides by -28.
x^{2}+\left(-\frac{392}{-28}\right)x=-\frac{89600}{-28}
Dividing by -28 undoes the multiplication by -28.
x^{2}+14x=-\frac{89600}{-28}
Divide -392 by -28.
x^{2}+14x=3200
Divide -89600 by -28.
x^{2}+14x+7^{2}=3200+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=3200+49
Square 7.
x^{2}+14x+49=3249
Add 3200 to 49.
\left(x+7\right)^{2}=3249
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{3249}
Take the square root of both sides of the equation.
x+7=57 x+7=-57
Simplify.
x=50 x=-64
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}