Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4+x\right)\times 64+\left(3x-2\right)\times 7=\left(2x+1\right)\times 10x
Variable x cannot be equal to any of the values -4,-\frac{1}{2},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 2\left(3x-2\right)\left(\frac{1}{2}x+2\right)\left(2x+1\right), the least common multiple of 6x^{2}-x-2,2x^{2}+9x+4,3x^{2}+10x-8.
256+64x+\left(3x-2\right)\times 7=\left(2x+1\right)\times 10x
Use the distributive property to multiply 4+x by 64.
256+64x+21x-14=\left(2x+1\right)\times 10x
Use the distributive property to multiply 3x-2 by 7.
256+85x-14=\left(2x+1\right)\times 10x
Combine 64x and 21x to get 85x.
242+85x=\left(2x+1\right)\times 10x
Subtract 14 from 256 to get 242.
242+85x=\left(20x+10\right)x
Use the distributive property to multiply 2x+1 by 10.
242+85x=20x^{2}+10x
Use the distributive property to multiply 20x+10 by x.
242+85x-20x^{2}=10x
Subtract 20x^{2} from both sides.
242+85x-20x^{2}-10x=0
Subtract 10x from both sides.
242+75x-20x^{2}=0
Combine 85x and -10x to get 75x.
-20x^{2}+75x+242=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-75±\sqrt{75^{2}-4\left(-20\right)\times 242}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 75 for b, and 242 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-75±\sqrt{5625-4\left(-20\right)\times 242}}{2\left(-20\right)}
Square 75.
x=\frac{-75±\sqrt{5625+80\times 242}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-75±\sqrt{5625+19360}}{2\left(-20\right)}
Multiply 80 times 242.
x=\frac{-75±\sqrt{24985}}{2\left(-20\right)}
Add 5625 to 19360.
x=\frac{-75±\sqrt{24985}}{-40}
Multiply 2 times -20.
x=\frac{\sqrt{24985}-75}{-40}
Now solve the equation x=\frac{-75±\sqrt{24985}}{-40} when ± is plus. Add -75 to \sqrt{24985}.
x=-\frac{\sqrt{24985}}{40}+\frac{15}{8}
Divide -75+\sqrt{24985} by -40.
x=\frac{-\sqrt{24985}-75}{-40}
Now solve the equation x=\frac{-75±\sqrt{24985}}{-40} when ± is minus. Subtract \sqrt{24985} from -75.
x=\frac{\sqrt{24985}}{40}+\frac{15}{8}
Divide -75-\sqrt{24985} by -40.
x=-\frac{\sqrt{24985}}{40}+\frac{15}{8} x=\frac{\sqrt{24985}}{40}+\frac{15}{8}
The equation is now solved.
\left(4+x\right)\times 64+\left(3x-2\right)\times 7=\left(2x+1\right)\times 10x
Variable x cannot be equal to any of the values -4,-\frac{1}{2},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 2\left(3x-2\right)\left(\frac{1}{2}x+2\right)\left(2x+1\right), the least common multiple of 6x^{2}-x-2,2x^{2}+9x+4,3x^{2}+10x-8.
256+64x+\left(3x-2\right)\times 7=\left(2x+1\right)\times 10x
Use the distributive property to multiply 4+x by 64.
256+64x+21x-14=\left(2x+1\right)\times 10x
Use the distributive property to multiply 3x-2 by 7.
256+85x-14=\left(2x+1\right)\times 10x
Combine 64x and 21x to get 85x.
242+85x=\left(2x+1\right)\times 10x
Subtract 14 from 256 to get 242.
242+85x=\left(20x+10\right)x
Use the distributive property to multiply 2x+1 by 10.
242+85x=20x^{2}+10x
Use the distributive property to multiply 20x+10 by x.
242+85x-20x^{2}=10x
Subtract 20x^{2} from both sides.
242+85x-20x^{2}-10x=0
Subtract 10x from both sides.
242+75x-20x^{2}=0
Combine 85x and -10x to get 75x.
75x-20x^{2}=-242
Subtract 242 from both sides. Anything subtracted from zero gives its negation.
-20x^{2}+75x=-242
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+75x}{-20}=-\frac{242}{-20}
Divide both sides by -20.
x^{2}+\frac{75}{-20}x=-\frac{242}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-\frac{15}{4}x=-\frac{242}{-20}
Reduce the fraction \frac{75}{-20} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{15}{4}x=\frac{121}{10}
Reduce the fraction \frac{-242}{-20} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{15}{4}x+\left(-\frac{15}{8}\right)^{2}=\frac{121}{10}+\left(-\frac{15}{8}\right)^{2}
Divide -\frac{15}{4}, the coefficient of the x term, by 2 to get -\frac{15}{8}. Then add the square of -\frac{15}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{121}{10}+\frac{225}{64}
Square -\frac{15}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{4997}{320}
Add \frac{121}{10} to \frac{225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{8}\right)^{2}=\frac{4997}{320}
Factor x^{2}-\frac{15}{4}x+\frac{225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{8}\right)^{2}}=\sqrt{\frac{4997}{320}}
Take the square root of both sides of the equation.
x-\frac{15}{8}=\frac{\sqrt{24985}}{40} x-\frac{15}{8}=-\frac{\sqrt{24985}}{40}
Simplify.
x=\frac{\sqrt{24985}}{40}+\frac{15}{8} x=-\frac{\sqrt{24985}}{40}+\frac{15}{8}
Add \frac{15}{8} to both sides of the equation.