Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{160-\left(4\sqrt{3}+4\right)^{2}}{4\times 16\sqrt{5}}
Add 64 and 96 to get 160.
\frac{160-\left(16\left(\sqrt{3}\right)^{2}+32\sqrt{3}+16\right)}{4\times 16\sqrt{5}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4\sqrt{3}+4\right)^{2}.
\frac{160-\left(16\times 3+32\sqrt{3}+16\right)}{4\times 16\sqrt{5}}
The square of \sqrt{3} is 3.
\frac{160-\left(48+32\sqrt{3}+16\right)}{4\times 16\sqrt{5}}
Multiply 16 and 3 to get 48.
\frac{160-\left(64+32\sqrt{3}\right)}{4\times 16\sqrt{5}}
Add 48 and 16 to get 64.
\frac{160-64-32\sqrt{3}}{4\times 16\sqrt{5}}
To find the opposite of 64+32\sqrt{3}, find the opposite of each term.
\frac{96-32\sqrt{3}}{4\times 16\sqrt{5}}
Subtract 64 from 160 to get 96.
\frac{96-32\sqrt{3}}{64\sqrt{5}}
Multiply 4 and 16 to get 64.
\frac{\left(96-32\sqrt{3}\right)\sqrt{5}}{64\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{96-32\sqrt{3}}{64\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(96-32\sqrt{3}\right)\sqrt{5}}{64\times 5}
The square of \sqrt{5} is 5.
\frac{\left(96-32\sqrt{3}\right)\sqrt{5}}{320}
Multiply 64 and 5 to get 320.
\frac{96\sqrt{5}-32\sqrt{3}\sqrt{5}}{320}
Use the distributive property to multiply 96-32\sqrt{3} by \sqrt{5}.
\frac{96\sqrt{5}-32\sqrt{15}}{320}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.