Evaluate
\frac{\sqrt{15}\left(\sqrt{3}-1\right)}{10}\approx 0.283522059
Factor
\frac{\sqrt{3} \sqrt{5} {(\sqrt{3} - 1)}}{10} = 0.28352205862919516
Share
Copied to clipboard
\frac{160-\left(4\sqrt{3}+4\right)^{2}}{4\times 16\sqrt{5}}
Add 64 and 96 to get 160.
\frac{160-\left(16\left(\sqrt{3}\right)^{2}+32\sqrt{3}+16\right)}{4\times 16\sqrt{5}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4\sqrt{3}+4\right)^{2}.
\frac{160-\left(16\times 3+32\sqrt{3}+16\right)}{4\times 16\sqrt{5}}
The square of \sqrt{3} is 3.
\frac{160-\left(48+32\sqrt{3}+16\right)}{4\times 16\sqrt{5}}
Multiply 16 and 3 to get 48.
\frac{160-\left(64+32\sqrt{3}\right)}{4\times 16\sqrt{5}}
Add 48 and 16 to get 64.
\frac{160-64-32\sqrt{3}}{4\times 16\sqrt{5}}
To find the opposite of 64+32\sqrt{3}, find the opposite of each term.
\frac{96-32\sqrt{3}}{4\times 16\sqrt{5}}
Subtract 64 from 160 to get 96.
\frac{96-32\sqrt{3}}{64\sqrt{5}}
Multiply 4 and 16 to get 64.
\frac{\left(96-32\sqrt{3}\right)\sqrt{5}}{64\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{96-32\sqrt{3}}{64\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(96-32\sqrt{3}\right)\sqrt{5}}{64\times 5}
The square of \sqrt{5} is 5.
\frac{\left(96-32\sqrt{3}\right)\sqrt{5}}{320}
Multiply 64 and 5 to get 320.
\frac{96\sqrt{5}-32\sqrt{3}\sqrt{5}}{320}
Use the distributive property to multiply 96-32\sqrt{3} by \sqrt{5}.
\frac{96\sqrt{5}-32\sqrt{15}}{320}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}