Solve for x
x = -\frac{113}{18} = -6\frac{5}{18} \approx -6.277777778
Graph
Share
Copied to clipboard
\frac{635}{72}\left(-\frac{2}{5}\right)=-\frac{11}{-4}+x
Multiply both sides by -\frac{2}{5}, the reciprocal of -\frac{5}{2}.
\frac{635\left(-2\right)}{72\times 5}=-\frac{11}{-4}+x
Multiply \frac{635}{72} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-1270}{360}=-\frac{11}{-4}+x
Do the multiplications in the fraction \frac{635\left(-2\right)}{72\times 5}.
-\frac{127}{36}=-\frac{11}{-4}+x
Reduce the fraction \frac{-1270}{360} to lowest terms by extracting and canceling out 10.
-\frac{127}{36}=-\left(-\frac{11}{4}\right)+x
Fraction \frac{11}{-4} can be rewritten as -\frac{11}{4} by extracting the negative sign.
-\frac{127}{36}=\frac{11}{4}+x
The opposite of -\frac{11}{4} is \frac{11}{4}.
\frac{11}{4}+x=-\frac{127}{36}
Swap sides so that all variable terms are on the left hand side.
x=-\frac{127}{36}-\frac{11}{4}
Subtract \frac{11}{4} from both sides.
x=-\frac{127}{36}-\frac{99}{36}
Least common multiple of 36 and 4 is 36. Convert -\frac{127}{36} and \frac{11}{4} to fractions with denominator 36.
x=\frac{-127-99}{36}
Since -\frac{127}{36} and \frac{99}{36} have the same denominator, subtract them by subtracting their numerators.
x=\frac{-226}{36}
Subtract 99 from -127 to get -226.
x=-\frac{113}{18}
Reduce the fraction \frac{-226}{36} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}