Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{63b^{2}}{7\left(2b+5\right)}
Factor the expressions that are not already factored.
\frac{9b^{2}}{2b+5}
Cancel out 7 in both numerator and denominator.
\frac{\left(14b^{1}+35\right)\frac{\mathrm{d}}{\mathrm{d}b}(63b^{2})-63b^{2}\frac{\mathrm{d}}{\mathrm{d}b}(14b^{1}+35)}{\left(14b^{1}+35\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(14b^{1}+35\right)\times 2\times 63b^{2-1}-63b^{2}\times 14b^{1-1}}{\left(14b^{1}+35\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(14b^{1}+35\right)\times 126b^{1}-63b^{2}\times 14b^{0}}{\left(14b^{1}+35\right)^{2}}
Do the arithmetic.
\frac{14b^{1}\times 126b^{1}+35\times 126b^{1}-63b^{2}\times 14b^{0}}{\left(14b^{1}+35\right)^{2}}
Expand using distributive property.
\frac{14\times 126b^{1+1}+35\times 126b^{1}-63\times 14b^{2}}{\left(14b^{1}+35\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{1764b^{2}+4410b^{1}-882b^{2}}{\left(14b^{1}+35\right)^{2}}
Do the arithmetic.
\frac{\left(1764-882\right)b^{2}+4410b^{1}}{\left(14b^{1}+35\right)^{2}}
Combine like terms.
\frac{882b^{2}+4410b^{1}}{\left(14b^{1}+35\right)^{2}}
Subtract 882 from 1764.
\frac{882b\left(b^{1}+5b^{0}\right)}{\left(14b^{1}+35\right)^{2}}
Factor out 882b.
\frac{882b\left(b+5b^{0}\right)}{\left(14b+35\right)^{2}}
For any term t, t^{1}=t.
\frac{882b\left(b+5\times 1\right)}{\left(14b+35\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{882b\left(b+5\right)}{\left(14b+35\right)^{2}}
For any term t, t\times 1=t and 1t=t.