Evaluate
\frac{63}{40}=1.575
Factor
\frac{3 ^ {2} \cdot 7}{2 ^ {3} \cdot 5} = 1\frac{23}{40} = 1.575
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)63}\\\end{array}
Use the 1^{st} digit 6 from dividend 63
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)63}\\\end{array}
Since 6 is less than 40, use the next digit 3 from dividend 63 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)63}\\\end{array}
Use the 2^{nd} digit 3 from dividend 63
\begin{array}{l}\phantom{40)}01\phantom{4}\\40\overline{)63}\\\phantom{40)}\underline{\phantom{}40\phantom{}}\\\phantom{40)}23\\\end{array}
Find closest multiple of 40 to 63. We see that 1 \times 40 = 40 is the nearest. Now subtract 40 from 63 to get reminder 23. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }23
Since 23 is less than 40, stop the division. The reminder is 23. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}