Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

63^{2}p^{2}+4\times 17^{2}p^{2}=1200
Multiply both sides of the equation by 16, the least common multiple of 16,4.
3969p^{2}+4\times 17^{2}p^{2}=1200
Calculate 63 to the power of 2 and get 3969.
3969p^{2}+4\times 289p^{2}=1200
Calculate 17 to the power of 2 and get 289.
3969p^{2}+1156p^{2}=1200
Multiply 4 and 289 to get 1156.
5125p^{2}=1200
Combine 3969p^{2} and 1156p^{2} to get 5125p^{2}.
p^{2}=\frac{1200}{5125}
Divide both sides by 5125.
p^{2}=\frac{48}{205}
Reduce the fraction \frac{1200}{5125} to lowest terms by extracting and canceling out 25.
p=\frac{4\sqrt{615}}{205} p=-\frac{4\sqrt{615}}{205}
Take the square root of both sides of the equation.
63^{2}p^{2}+4\times 17^{2}p^{2}=1200
Multiply both sides of the equation by 16, the least common multiple of 16,4.
3969p^{2}+4\times 17^{2}p^{2}=1200
Calculate 63 to the power of 2 and get 3969.
3969p^{2}+4\times 289p^{2}=1200
Calculate 17 to the power of 2 and get 289.
3969p^{2}+1156p^{2}=1200
Multiply 4 and 289 to get 1156.
5125p^{2}=1200
Combine 3969p^{2} and 1156p^{2} to get 5125p^{2}.
5125p^{2}-1200=0
Subtract 1200 from both sides.
p=\frac{0±\sqrt{0^{2}-4\times 5125\left(-1200\right)}}{2\times 5125}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5125 for a, 0 for b, and -1200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 5125\left(-1200\right)}}{2\times 5125}
Square 0.
p=\frac{0±\sqrt{-20500\left(-1200\right)}}{2\times 5125}
Multiply -4 times 5125.
p=\frac{0±\sqrt{24600000}}{2\times 5125}
Multiply -20500 times -1200.
p=\frac{0±200\sqrt{615}}{2\times 5125}
Take the square root of 24600000.
p=\frac{0±200\sqrt{615}}{10250}
Multiply 2 times 5125.
p=\frac{4\sqrt{615}}{205}
Now solve the equation p=\frac{0±200\sqrt{615}}{10250} when ± is plus.
p=-\frac{4\sqrt{615}}{205}
Now solve the equation p=\frac{0±200\sqrt{615}}{10250} when ± is minus.
p=\frac{4\sqrt{615}}{205} p=-\frac{4\sqrt{615}}{205}
The equation is now solved.