Evaluate
\frac{625}{24}\approx 26.041666667
Factor
\frac{5 ^ {4}}{2 ^ {3} \cdot 3} = 26\frac{1}{24} = 26.041666666666668
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)625}\\\end{array}
Use the 1^{st} digit 6 from dividend 625
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)625}\\\end{array}
Since 6 is less than 24, use the next digit 2 from dividend 625 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)625}\\\end{array}
Use the 2^{nd} digit 2 from dividend 625
\begin{array}{l}\phantom{24)}02\phantom{4}\\24\overline{)625}\\\phantom{24)}\underline{\phantom{}48\phantom{9}}\\\phantom{24)}14\\\end{array}
Find closest multiple of 24 to 62. We see that 2 \times 24 = 48 is the nearest. Now subtract 48 from 62 to get reminder 14. Add 2 to quotient.
\begin{array}{l}\phantom{24)}02\phantom{5}\\24\overline{)625}\\\phantom{24)}\underline{\phantom{}48\phantom{9}}\\\phantom{24)}145\\\end{array}
Use the 3^{rd} digit 5 from dividend 625
\begin{array}{l}\phantom{24)}026\phantom{6}\\24\overline{)625}\\\phantom{24)}\underline{\phantom{}48\phantom{9}}\\\phantom{24)}145\\\phantom{24)}\underline{\phantom{}144\phantom{}}\\\phantom{24)99}1\\\end{array}
Find closest multiple of 24 to 145. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 145 to get reminder 1. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }1
Since 1 is less than 24, stop the division. The reminder is 1. The topmost line 026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}